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Abstract

When constructing confidence intervals for the mean and variance of a stationary continuous-
time stochastic process, two approaches have been considered in the literature: one based on the
so-called long-run variance of the process and its square, and the other based on the so-called
self-normalization. These approaches are revisited here in the context of random oscillatory
processes such as random (non-)linear oscillators and related models with particular attention
to the problem of estimating the non-zero long-run variances of the processes. The case of the
zero long-run variance, which has been studied and is quite different, is also considered. The
approaches are extended to the situation where multiple independent records of the stochastic
process are available, for example, by introducing an estimator of the long-run variance which
improves on other natural candidate estimators. Finally, a simulation study is provided to assess
the performance of the proposed methods in estimating the long-run variances and constructing
confidence intervals, and a data example is considered.

AMS subject classifications. Primary: 62M10, 62M15, 62G05. Secondary: 60H10, 60K40,
70L05.
Keywords and phrases: (non-)linear random oscillator, long-run variance, self-normalization,
degenerate case, confidence interval, kernel function, bandwidth, multiple records.

1 Introduction
Let {Xt}t∈R be a stationary continuous-time stochastic process with mean µ(X) = EXt and vari-
ance σ2(X) = Var(Xt). We are interested here in the processes representing random oscillatory
systems, with a number of examples (linear random oscillators, etc.) discussed in Appendix A.
The motivating real applications of our particular interest include processes related to ship motions
(e.g. ship roll, pitch and yaw dynamics, bending moments, etc.), but potential applications would
naturally arise in a range of other areas where random oscillatory systems play a fundamental role
(see e.g. Gitterman (2005), Neimark and Landa (2012), Liang and Lee (2015)). The basic problem
addressed in this work is providing confidence intervals for the mean µ(X) and the variance σ2(X)
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(and consequently for the standard deviation σ(X) as well) from the observed continuous-time sam-
ple Xt, t ∈ [0, T ], or the corresponding discrete sample X∆k, k = 1, . . . , T/∆. Though it should be
kept in mind that the approach discussed here also applies to other quantities of possible interest,
e.g. autocovariance at a given lag (see Remarks 3.1 and 3.2 below).

Focusing on the continuous-time sample Xt, t ∈ [0, T ], and on estimating the mean µ(X),
consider the sample mean

XT =
1

T

∫ T

0
Xsds. (1.1)

Its normalized asymptotic variance is

lim
T→∞

T Var(XT ) =

∫ ∞

−∞
ΓX(u)du =: Π(X), (1.2)

where Γ(u) = EX0Xu − µ(X)2 is the autocovariance function. The quantity Π(X) is known as the
long-run variance of the process X = {Xt}t∈R. For example, its estimator would naturally enter
into the approximate normal confidence intervals for the mean µ(X). Similarly, define the sample
variance

σ̂2
T (X) =

1

T

∫ T

0
(Xs −XT )

2ds =
1

T

∫ T

0
X2

sds− (XT )
2 = X2

T − (XT )
2 (1.3)

and set
lim
T→∞

T Var
(( XT

X2
T

))
=

( ∫∞
−∞ ΓX(u)du

∫∞
−∞ ΓX,X2(u)du∫∞

−∞ ΓX,X2(u)du
∫∞
−∞ ΓX2(u)du

)

=:

(
Π(X) Π(X,X2)

Π(X,X2) Π(X2)

)
=: Π(2)(X,X2), (1.4)

where ΓX,X2(u) = EX(0)X(u)2 − µ(X)µ(X2). One then expects (see Section 3 for details) that

lim
T→∞

T Var(σ̂2
T (X)) = Π(X2)− 4µ(X)Π(X,X2) + 4µ(X)2Π(X). (1.5)

The matrix quantity Π(2)(X,X2) in (1.4) is the long-run variance of the vector process (X,X2)′ =
{(Xt, X

2
t )

′}t∈R. Here and throughout, the prime indicates a transpose. The long-run variances are
also equal to (possibly up to a multiplicative constant) the spectral densities of the processes at
the origin.

Estimation of the long-run variances, such as Π(X) and Π(2)(X,X2) above, is a well-studied
problem, especially for discrete-time processes (series) X. The often cited seminal reference is
Andrews (1991), though the pioneering work in the parallel problem of estimating the spectral
density of the process goes back at least to Parzen (1957) and others. We shall refer often to
Lu and Park (2014) who focused on continuous-time stochastic processes satisfying a stochastic
differential equation and estimation issues from discrete samples.

One of the goals of this work is to revisit estimation of the long-run variances according to the
proposed methods, and to assess their performance on the processes associated with oscillatory
systems. The case of the inference of the mean is considered in Section 2.1, and that of the
variance in Section 3.1. The numerical results are reported in Section 7.1. Aside from some natural
adaptations specific to oscillatory systems, this part of the work is rather of the informative nature,
especially to those unfamiliar with the relevant literature.
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Similarly, we shall also revisit the construction of confidence intervals based on the so-called self-
normalization (e.g. Shao (2015)), which does not require estimating the long-run variance. Those
unfamiliar with the approach might find this surprising but the basic ideas are quite straightforward
(see Section 2.2 for the case of the mean, and Section 3.2 for that of the variance). The numerical
results for the self-normalization approach and comparison to the approach based on estimating the
long-run variances are also reported in Section 7.1. As in other applications of the self-normalization
approach, the corresponding confidence intervals tend to be slightly wider on average (compared
to those with the estimated long-run variances), but an advantage of the method is its simplicity.

Several other aspects of this work are more novel. Estimation of the long-run variance referenced
above (and for that matter the self-normalization approach) assumes implicitly that the long-run
variance is non-zero. In Section 4, we also study the case when the long-run variance is zero, which
is quite plausible with oscillatory systems and is also the case in the considered data application
(Section 7.2). As shown, perhaps somewhat surprisingly, inference about the mean in the case of
zero long-run variance is in fact conceptually simpler than that in the case of non-zero long-run
variance. In practice, as we argue below, the so-called unit root tests can be used to decide on
whether given data are consistent with the hypotheses of non-zero long-run variance.

As another novel aspect of the general problem of constructing confidence intervals, we also
study the case when a number of independent records of the same process are available. See Section
5. This is a quite common situation in several applications, for example, related to ship motions,
where multiple records would correspond to different experimental runs in an actual model basin,
or be obtained by using a computer generation. When considering multiple records, two natural
estimators of the long-run variance can be considered: first, the average of the long-run variance
estimators of the individual records, and second, the long-run variance estimator deduced from the
sample variance of the sample means of individual records. In this regard, we introduce here an
estimator that generally outperforms these two natural estimators of the long-run variance, and
explain its improved performance. In addition, we propose a way to construct confidence intervals
based on self-normalization.

For the sake of clarity, we focus on the case when a sample of the process is available in the
continuous time. Some issues behind using discrete samples of the process, which is the more
realistic scenario in practice, are discussed in Section 6. Finally, as noted above, Section 7 contains
numerical results assessing the performance of the methods described in this work, and Appendix
A details a number of processes associated with oscillatory systems that are considered here.

2 Estimation of mean
2.1 Approach involving long-run variance
As in Section 1, consider a continuous-time stationary process X = {Xt}t∈R with mean µ(X) = EXt

and finite variance σ2(X) = Var(Xt). Suppose given a continuous-time sample Xt, t ∈ [0, T ], from
which one would like to estimate the mean µ(X) by using the sample mean XT in (1.1). The
approximate normal confidence intervals for µ(X) would include the long-run variance Π(X) in
(1.2), which needs to be estimated from data. In defining the estimator of the long-run variance,
the so-called kernel function plays a key role.

A kernel K is a function K : R → R such that it is symmetric, K(0) = 1 and
∫
RK(x)2dx < ∞.
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(In some instances, additional assumptions are made.) Let

Kr = lim
x→0

1−K(x)

|x|r
, r ∈ Z+, (2.1)

and ν = max{r : Kr < ∞}. The quantity ν measures smoothness of the kernel K(x) at x = 0.
Examples of commonly used kernels are Quadratic Spectral (QS): K(x) = 25

12π2x2

(
sin(6πx/5)

6πx/5 −

cos(6πx/5)
)

, Bartlett: K(x) = (1 − |x|)1{|x|≤1}, Truncated: K(x) = 1{|x|≤1}. (The notation 1A

stands for the indicator function of the set A, that is, 1A(x) = 1 if x ∈ A, and = 0 otherwise.) For
QS kernel, ν = 2 and K2 ≈ 1.4212. For Bartlett kernel, ν = 1 and K1 = 1.

Following the main approach found in the literature, the estimator of the long-run variance
Π(X) in (1.2) is then defined as

Π̂T (X) =

∫ T

−T
K
( u

ST

)
Γ̂T (u)du, (2.2)

where ST (which is smaller than T ) is known as the bandwidth, and

Γ̂T (u) =
1

T

∫ T−u

0
(Xs+u −XT )(Xs −XT )ds, Γ̂T (−u) = Γ̂T (u), 0 < u < T, (2.3)

estimates the autocovariance function of the process X.
The optimal value of the bandwidth, balancing the asymptotic bias and variance of the estimator

Π̂T (X), was derived by Lu and Park (2014), and is given by

Sopt,T =
(νK2

νCν(X)2∫
K(x)2dx

T
)1/(2ν+1)

, (2.4)

where Kν and ν are associated with the kernel K and defined in (2.1) and following (2.1), respec-
tively,

Cν(X) =
Λν(X)

Π(X)
(2.5)

and
Λν(X) =

∫
R
|u|νΓX(u)du, ν ∈ Z+. (2.6)

Remark 2.1. If SX is the spectral density of the process X satisfying (by convention)

SX(w) =

∫ ∞

−∞
ΓX(u) cos(wu)du, ΓX(h) =

1

2π

∫ ∞

−∞
SX(w) cos(hw)dw, (2.7)

then for even ν,
Λν(X) = (−1)ν/2

dνSX(w)

dwν

∣∣∣
w=0

.

As mentioned above, we also have Π(X) = SX(0).
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Note that the constant Cν(X) in (2.5) depends on the underlying process X. Several ways of
estimating this constant have been suggested. The most popular method seems to be model-driven.
For this method, a model would be fitted to data and the constant Cν(X) would be calculated
based on the fitted model. For example, Lu and Park (2014) focus on continuous-time Ornstein-
Uhlenbeck (mean reversion) type models. In the context of oscillatory systems, it seems natural to
fit to the data a linear oscillator with white noise excitation (see Appendix A). Several ways and
references for performing this task from discrete sample are discussed in Section 6.

Another method for estimating Cν(X) in (2.5) is data-driven. In this method, the idea is to use
kernel-based estimators of Π(X) (as defined in (2.2) above) and Λν(X) (as in (2.2) but replacing
Γ̂T (u) by |u|νΓ̂T (u)) with some crude choice of the bandwidth ST . In Section 7 below, we use
the bandwidth ST =

√
T when estimating Π(X) and Λν(X) for the constant Cν(X) (but see also

Remark 6.2). The model-driven approach is often cited in the literature as being more stable than
the data-driven approach, but our simulation study suggests that the data-driven method is often
as good, if not superior.

Finally, for the considered estimator Π̂T (X) of the long-run variance, an approximate normal
confidence interval for the mean is defined as(

XT − zα

√
V̂ar(XT ), XT + zα

√
V̂ar(XT )

)
, (2.8)

where
V̂ar(XT ) =

Π̂T (X)

T
(2.9)

and zα is the critical value for the standard normal distribution associated with a confidence level
α.

2.2 Approach based on self-normalization
The self-normalization approach allows constructing confidence intervals for the mean without
estimating the long-run variance. The unfamiliar reader might be surprised that this is possible at
all! In fact, there is some “price” to pay: the confidence intervals will not be based on a normal
distribution and, on average, they tend to be slightly larger. The self-normalization method goes
back at least to Lobato (2001) and is summarized nicely in Shao (2015). To explain the approach, we
need a slightly stronger result than the central limit theorem, according to which

√
T (XT − µ(X))

converge to a normal distribution with zero mean and variance Π(X) as T → ∞. By the so-called
functional central limit theorem, it is expected that, for z ∈ [0, 1],

1√
T

∫ Tz

0
(Xs − µ(X)) ds ≈

√
Π(X)W (z), (2.10)

where W (z) , z ∈ [0, 1], is a standard Wiener process (with the term “standard” referring to
EW (1)2 = 1). Note that by setting z = 1, (2.10) can also be written as

√
T (XT − µ(X)) ≈

√
Π(X)W (1), (2.11)

which is just another way to express the central limit theorem.
Now, set

N2
T =

∫ 1

0

(
1√
T

∫ Tz

0

(
Xs −XT

)
ds

)2

dz (2.12)
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and note that the quantity inside the square can be expressed as

1√
T

∫ Tz

0
(Xs − µ (X)) ds− z

√
T (XT − µ (X)).

The central limit theorems in (2.10) and (2.11) then suggest that

N2
T ≈ Π(X)

∫ 1

0
(W (z)− zW (1))2 dz. (2.13)

The key observation now is that both (2.11) and (2.13) involve the same long-run variance
Π(X), which would cancel out by taking the ratio of the two. That is, we expect that

√
T
XT − µ(X)

NT
≈ W (1)(∫ 1

0 (W (z)− zW (1))2 dz
)1/2

=: U0. (2.14)

This leads to an approximate confidence interval for the mean given by(
XT − uαNT√

T
,XT +

uαNT√
T

)
, (2.15)

where uα is a critical value from the distribution of U0 for a desired confidence level α. Some
critical values for (U0)

2 are tabulated in Lobato (2001). For example, for α = 90%, these yield
uα =

√
28.31 = 5.32.

As indicated above, the last point also shows a potential price to pay. The critical values for
U0 are larger than those for the standard normal, potentially leading to larger confidence intervals.
This happens only “potentially,” since the relationship between Π̂(X)1/2 in the normal confidence
interval (2.8) and NT in the confidence interval (2.15) is a priori not clear. In fact, note that the
long-run variance Π(X) estimated by Π̂(X) is deterministic, whereas NT is random. A relationship
such as NT > Π̂(X)1/2 can only be quantified in probabilistic terms.

3 Estimation of variance
3.1 Approach involving long-run variance
We now turn to inference for the variance σ2(X) of a continuous-time stationary process X =
{Xt}t∈R, through the sample variance σ̂2

T (X) defined in (1.3). As indicated around (1.3)–(1.5) in
Section 1, the long-run variance Π(2)(X,X2) of the bivariate process (X,X2)′ = {(Xt, X

2
t )

′}t∈R in
(1.4) now plays a central role. It can be estimated similarly to the long-run variance Π(X), as
outlined next.

As in Section 2, define the kernel-based estimator of the long-run variance Π(2)(X,X2) as

Π̂
(2)
T (X,X2) =

∫ T

−T
K
( u

ST

)
Γ̂
(2)
T (u)du, (3.1)

where ST is the bandwidth, and

Γ̂
(2)
T (u) =

1

T

∫ T−u

0

( Xs+u −XT

X2
s+u −X2

T

)( Xs −XT

X2
s −X2

T

)′
ds, Γ̂

(2)
T (−u) = Γ̂

(2)
T (u), 0 < u < T, (3.2)
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estimates the autocovariance matrix function of the bivariate process (X,X2)′. This also natu-
rally yields the estimators Π̂T (X), Π̂T (X

2) and Π̂T (X,X2) of the components Π(X), Π(X2) and
Π(X,X2) of the long-run variance matrix Π(2)(X,X2) in (1.4). The optimal value of the band-
width, balancing the asymptotic bias and variance of the estimator Π̂

(2)
T (X,X2), was derived by

Lu and Park (2014), and is given by

Sopt,T =
(νK2

νCν(X,X2)2∫
K(x)2dx

T
)1/(2ν+1)

, (3.3)

where Kν and ν are associated with the kernel K and defined in (2.1) and following (2.1), respec-
tively,

Cν(X,X2) =
(Λ2

ν(X) + Λ2
ν(X

2)

Π2(X) + Π2(X2)

)1/2
(3.4)

and Λν(·) is defined in (2.6). (In fact, the optimal bandwidth derived by Lu and Park (2014) allows
for different weights in balancing the asymptotic bias and variance of the components of the matrix
estimator Π̂

(2)
T (X,X2); the bandwidth given above corresponds to equal “diagonal” weights in the

weighing scheme.) In practice, the constant Cν(X,X2) is estimated through either the model- or
data-driven approaches in the same way as discussed in Section 2 following Remark 2.1.

Finally, with the estimator Π̂
(2)
T (X,X2) =: (Π̂T (X) Π̂T (X,X2); Π̂T (X,X2) Π̂T (X

2)) of the
long-run variance matrix given by (3.1)–(3.2), an approximate normal confidence interval for the
variance is defined as(

σ̂2
T (X)− zα

√
V̂ar(σ̂2

T (X)), σ̂2
T (X) + zα

√
V̂ar(σ̂2

T (X))
)
, (3.5)

where
V̂ar(σ̂2

T (X)) =
Π̂T (X

2)− 4XT Π̂T (X,X2) + 4(XT )
2Π̂T (X)

T
(3.6)

and zα is the critical value for the standard normal distribution associated with a confidence level
α. The numerator in (3.6) is motivated by the form of the asymptotic variance of σ̂2

T (X) in (1.5).
The latter form itself is a consequence of the delta method applied to the right-hand side of (1.3)
and using (1.4).

Remark 3.1. A similar application of the delta method to the sample standard deviation σ̂T (X) =
(σ̂2

T (X))1/2 yields an approximate normal confidence interval for the standard deviation σ(X) of
the process, defined as(

σ̂T (X)− zα

√
V̂ar(σ̂T (X)), σ̂T (X) + zα

√
V̂ar(σ̂T (X))

)
, (3.7)

where zα is as in (3.5) and

V̂ar(σ̂T (X)) =
Π̂T (X

2)− 2(XT )
2Π̂T (X)− 4(XT )

2Π̂T (X,X2)

T (4(X2
T − (XT )2))

. (3.8)

Remark 3.2. The inference approach outlined above can also be applied to estimating quanti-
ties of interest other than the mean, the variance or the standard deviation. For example, the
autocovariance of a process X at lag h > 0, defined as

γX(h) = EX0Xh − µ(X)2 = E(X0 − µ(X))(Xh − µ(X)),
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is naturally estimated through

γ̂T (h) = (XX ·+h)T − (XT )
2,

where
(XX ·+h)T =

1

T

∫ T−h

0
(Xs+h −XT )(Xs −XT )

2ds.

In this case, the long-run variance matrix of the bivariate process (X,XX ·+h)
′ = {(Xt, XtXt+h)

′, t ∈
R} is relevant and could be estimated similarly to (3.1).

3.2 Approach based on self-normalization
A simple-minded approach would be to treat the sample variance in (1.3) just as the sample mean
of (Xs − XT )

2 or, after an approximation, of (Xs − EXs)
2, and then just apply the approaches

outlined in Section 2.2 with Xs replaced by (Xs −XT )
2. This effectively assumes that in the self-

normalization approach, working with (Xs − XT )
2 is the same, in the asymptotic sense for large

T , as working with (Xs − EXs)
2 . Some justification for this in a similar setting can be found in

Lobato (2001), Sec. 3.

4 Degenerate case
The discussion in Sections 2 and 3 assumes implicitly that the long-run variance Π(X) ̸= 0. What
happens in the case

Π(X) = 0 (equivalently, SX(0) = 0), (4.1)

where SX is the spectral density of the process X defined in Remark 2.1? This case is known as
degenerate (e.g. Lee (2010)). Having zero long-run variance is quite plausible for processes associated
with oscillatory systems, since their autocovariance function exhibits naturally an oscillating pattern
and thus can integrate to 0.

In the degenerate case, since SX(0) = 0 and SX(w) is even and often smooth at w = 0, it is
expected that ∫ ∞

−∞

SX(w)

|w|2
dw < ∞. (4.2)

Under this assumption, one can write∫ t

0
(Xs − µ(X))ds = Vt − V0, (4.3)

where {Vt}t∈R is a stationary process with zero mean. Indeed, by writing Xs in the spectral
domain as Xs − µ(X) =

∫∞
−∞ eisw

√
SX(w)Z(dw) with a complex-valued random measure Z(dw)

having orthogonal increments and E|Z(dw)|2 = dw/(2π), note that∫ t

0
(Xs − µ(X))ds =

∫ ∞

−∞

(∫ t

0
eiswds

)√
SX(w)Z(dw)

=

∫ ∞

−∞
eitw

√
SX(w)

iw
Z(dw)−

∫ ∞

−∞

√
SX(w)

iw
Z(dw),
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that is, the stationary process Vt can be taken as
∫∞
−∞ eitw(

√
SX(w)/iw)Z(dw) and has the spectral

density SX(w)/|w|2. It follows from (4.3) that

T (XT − µ(X)) =

∫ T

0
(Xs − µ(X))ds

d
= VT − V0. (4.4)

Note that, compared to (1.2), the convergence rate of Var(XT ) is then T 2, and not T . Note also
that VT − V0 does not need to be Gaussian.

Thus, in view of (4.3), the integrated process
∫ t
0 (Xs − µ(X))ds is nearly stationary itself,

especially as t increases (since dependence between Vt and V0 is then expected negligible). In
particular, we expect that, for large T ,

T (XT − µ(X)) ≈ V ′
0 − V0, (4.5)

where V ′
0 is an independent copy of V0, and an approximate (not necessarily normal) confidence

interval can be constructed as(
XT −

̂tα(V ′
0 − V0)

T
,XT +

̂tα(V ′
0 − V0)

T

)
, (4.6)

where tα(V
′
0 −V0) denotes the (1+α)/2 quantile of V ′

0 −V0 and the hat its estimator. Note that, in
practice, the value (−V0) can be estimated as the sample mean of

∫ t
0 (Xs −XT )ds, 0 < t < T , and

then removed from Vt − V0 to obtain a realization of Vt. The latter realization can then be used to
estimate the corresponding quantile of V ′

0 − V0: in practice, we use resampling from a realization
of Vt to obtain a sample of the values of V ′

0 − V0, from which we then select a desired quantile.
We also note that from a practical perspective, a decision needs to be made on whether the

underlying process is in the degenerate case or, equivalently, whether the integrated process
∫ t
0 (Xs−

µ(X))ds can be viewed stationary. As discussed in Section 7 below, this can be achieved by using
one of the available so-called unit root tests.

Finally, the discussion above concerns the case of estimating the mean. Turning to estimation
of the variance, recall that it involves estimation of the mean of the square process X2. If X can be
expected to fall in the degenerate case, we do not expect this to be the case with the square process
X2. For example, if X is Gaussian, then ΓX2(h) = 2(ΓX(h))2 and Π(X2) =

∫∞
−∞ ΓX2(h) ̸= 0. If X

falls in the degenerate case but X2 does not, then

lim
T→∞

T Var(σ̂2
T (X)) = Π(X2),

since the rate of convergence of (XT )
2 to µ(X)2 is faster than

√
T . Hence, only the long-run

variance of the process X2 needs to be estimated.

5 The case of multiple records
5.1 Approach involving long-run variance

Consider a number of records X(r)
t , t ∈ [0, Tr], r = 1, . . . , R, that are independent across r. Suppose

that
Tr = CrT with Cr ∈ (0, 1),

∑
r

Cr = 1. (5.1)
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Thus,
∑

r Tr = T . For example, the case of the records of equal length corresponds to

Cr = 1/R and Tr = T/R.

Considering inference for the mean first, it can be estimated through

XT =
∑
r

CrX
(r)
Tr

, (5.2)

that is, as the appropriately weighted average of the sample means of the R records. Note that

T Var(XT ) = T
∑
r

C2
r Var(X(r)

Tr
) =

∑
r

CrTr Var(X(r)
Tr

) →
∑
r

CrΠ(X) = Π(X). (5.3)

For confidence intervals, the long-run variance Π(X) thus again needs to be estimated, but this time
from R records. We focus in this section on the non-degenerate case when the long-run variance is
non-zero.

We note first that several natural estimators of the long-run variance can be introduced in the
case of multiple records. First, there is the weighted average of the estimators of the long-run
variance across the records, defined as

Π̂ave,T (X) =
∑
r

CrΠ̂
(r)
Tr

(X) =
∑
r

Cr

∫ Tr

−Tr

K
( u

STr

)
Γ̂
(r)
Tr

(u)du, (5.4)

where Π̂(r)
Tr

(X) is the estimator of the long-run variance for the rth record. Second, a direct estimator
of the long-run variance can be defined as a properly normalized sample variance of the sample
means across the records. Indeed, consider the case of equal length records and recall that Π(X)

approximately equals Tr Var(X(r)
Tr

). But since one now has R sample means X
(r)
Tr

, r = 1, . . . , R,
one can naturally estimate Var(X(r)

Tr
) through the sample variance of X(r)

Tr
, r = 1, . . . , R, and then

normalize it by Tr to get the estimator of the long-run variance. In the case of equal length records,
this direct estimator is

Π̂dir,T (X) =
Tr

R

∑
r

(
X

(r)
Tr

−XT

)2
= T

∑
r

1

R2

(
X

(r)
Tr

−XT

)2
. (5.5)

This motivates the following definition in the general case,

Π̂dir,T (X) = T
∑
r

C2
r

(
X

(r)
Tr

−XT

)2
. (5.6)

Note that this definition is also consistent with the expressions in (5.3) where Var(X(r)
Tr

) is replaced
by a “naive” estimator (X

(r)
Tr

−XT )
2. Note also that the estimator Π̂dir,T (X) is unique to the case

of multiple records.
Which of the estimators, Π̂ave,T (X) or Π̂dir,T (X), should be preferred? The simulation results

in Section 7 suggest that Π̂ave,T (X) is superior to Π̂dir,T (X) in terms of the variance, but that it
can also be inferior in terms of the bias. In fact, another estimator can be introduced which enjoys
both advantages of the two natural estimators. To motivate the definition of the new estimator,
we shall rewrite the estimator Π̂dir,T (X) in a different form as follows.
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Observe that

Π̂dir,T (X) = T
∑
r

C2
r

( 1

Tr

∫ Tr

0
X(r)

s ds−XT

)2
= T

∑
r

C2
r

T 2
r

(∫ Tr

0
(X(r)

s −XT )ds
)2

=
∑
r

Cr

Tr

∫ Tr

0

∫ Tr

0
(X(r)

s −XT )(X
(r)
t −XT )dsdt =

∑
r

Cr

∫ Tr

−Tr

Γ̂
(r)
0,Tr

(u)du, (5.7)

where

Γ̂
(r)
0,Tr

(u) =
1

Tr

∫ Tr−u

0
(X

(r)
s+u −XT )(X

(r)
s −XT )ds, Γ̂

(r)
0,Tr

(−u) = Γ̂
(r)
0,Tr

(u), 0 < u < Tr. (5.8)

There are two key differences between the average estimator (5.4) and the direct estimator (5.7):
first, the average estimator uses a kernel function to down-weigh the effects of the estimator of
the autocovariance function at large lags (and thus to reduce the variance), and second, the direct
estimator employs the mean across the records in estimating the autocovariance function (and thus
reducing the bias). In view of these differences, it natural to introduce the following estimator of
the long-run variance,

Π̂T (X) =
∑
r

Cr

∫ Tr

−Tr

K
( u

STr

)
Γ̂
(r)
0,Tr

(u)du =:
∑
r

CrΠ̂
(r)
0,Tr

(X), (5.9)

that is, defined as the average of the estimators of the long-run variance for the R records which use
the mean across all records in the estimation of the autocovariance function. As shown in Section
7, this estimator generally outperforms the average and direct estimators of the long-run variance.

Finally, we note that the superiority of the estimator in (5.9) is more apparent when X is
replaced by the square process X2, which is relevant when estimating the variance σ2(X) of the
process (Section 3 above).

5.2 Approach based on self-normalization
This section describes one possible and natural way to adapt the self-normalization approach to
the case of multiple records. Note that the sample mean XT across the R records in (5.2) can also
be expressed as

XT =
1

T

∫ T

0
Xsds, (5.10)

where T =
∑

r Tr and
Xs =

∑
r

X
(r)

s−
∑r−1

q=1 Tq
1[

∑r−1
q=1 Tq ,

∑r
q=1 Tq)(s) (5.11)

is the process obtained by “concatenating” the R records together. As in (2.12), consider the
normalization quantity for the process (5.10)–(5.11) defined as

N2
T =

∫ 1

0

(
1√
T

∫ Tz

0

(
Xs −XT

)
ds

)2

dz. (5.12)
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R \ p 0.95 0.97 0.99 0.995
1 5.2836 6.7710 8.6115 9.9781
2 5.3116 6.7432 8.6533 10.038
3 5.3626 6.7414 8.6497 10.120
4 5.3224 6.7806 8.5813 10.031
5 5.2818 6.6775 8.6066 10.061
10 5.3057 6.7258 8.5940 10.147

Table 1: Quantiles of U0,R.

By using the relations analogous to (2.10) but for the R records, one can show that

N2
T ≈

R∑
r=1

∫ 1

0

r−1∑
q=1

√
CqW

(q)(1) +
√

CrW
(r)(w)− (Cr−1 + Crw)

R∑
q=1

√
CqW

(q)(1)

2

dw, (5.13)

where Cq =
∑q

i=1Ci and {W (1)(w)}w∈[0,1], ..., {W (R)(w)}w∈[0,1] are R independent standard Brow-
nian motions.

For example, in the case of R records of equal length with Cr = 1/R, r = 1, ..., R the above
discussion suggests that
√
T
XT − µ(X)

NT
≈

∑R
r=1W

(r)(1)(∑R
r=1

∫ 1
0

(∑r−1
q=1W

(q)(1) +W (r)(w)− r−1+w
R

∑R
q=1W

(q)(1)
)2

1
Rdw

)1/2
=: U0,R.

(5.14)
Several quantiles of the distribution of U0,R for several values of R are tabulated in Table 1. They
were computed as the suitable quantiles obtained from multiple generated values of U0,R, calculated
after discretizing the intergal in the last denominator in (5.14). More specifically, a random walk
W (w) was approximated by N−1/2

∑[Nw]
n=1 Zn with i.i.d. standard normal Zn and N = 10, 000, and

100, 000 independent replications of U0,R were used.
With the quantiles available from Table 1, a confidence interval for the mean based on multiple

records can be constructed as in (2.15).

6 Discretization and other issues
In Sections 2–5, we assumed that a continuous-time sample (or multiple samples) of the analyzed
process is available. In practice, however, a discrete(-time) sample of the process is given, namely,
Xk∆, k = 1, . . . , T/∆, where ∆ > 0 is the discretization step and we assume for simplicity that

T

∆
= n (6.1)

is an integer. We examine here a number of issues behind using a discrete sample rather than a
continuous-time one, when estimating the process mean and the process variance. Our goal is not
to provide any formal proofs (as e.g. in Lu and Park (2014) concerning estimation of the long-run
variance through discrete sample) but rather to guide a practitioner through a number of issues
that arise from the practical perspective. This section concerns and focuses on the approach based
on the long-run variance, which is the more sophisticated approach considered in this paper.
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6.1 Discretizing proposed estimators
The various estimators of long-run variances introduced above (see (2.2), (3.1), (5.4), (5.6) and
(5.9)) involve integrals in continuous time which can be discretized when working with discrete
samples. For example, the discrete version of the estimator (2.2) of the long-run variance is defined
as

Π̂T,∆(X) =

(T−∆)/∆∑
j=−(T−∆)/∆

K
( j∆

ST,∆

)
Γ̂T,∆(j∆)∆

= ∆
n−1∑

j=−(n−1)

K
( j

m

)
Γ̂n(j) =: ∆ · Ωn, (6.2)

where
m =

ST,∆

∆
(6.3)

is referred to as the bandwidth for the discrete sample with some discrete version ST,∆ of the
continuous-time bandwidth ST ,

Γ̂T,∆(j∆) =
1

T

(T−j∆)/∆∑
k=1

(X(k+j)∆ −XT,∆)(Xk∆ −XT,∆)∆

=
1

n

n−j∑
k=1

(X(k+j)∆ −XT,∆)(Xk∆ −XT,∆)

= : Γ̂n(j), j = 0, 1, . . . , n− 1, (6.4)

and Γ̂T,∆(−j∆) = Γ̂T,∆(j∆), Γ̂n(−j) = Γ̂n(j), and

XT,∆ =
1

T

T/∆∑
k=1

Xk∆∆ =
1

n

n∑
k=1

Xk∆. (6.5)

The expressions following the first equality signs in (6.2), (6.4) and (6.5) are written as to emphasize
that the integrals in the corresponding continuous-time estimators are discretized. The quantity
Ωn in (6.2) is the usual estimator of the long-run variance

Π(X∆) =
∞∑

k=−∞
ΓX∆

(k) with ΓX∆
(k) = EX0Xk∆ − µ(X)2 = ΓX(k∆),

of the discrete time series X∆ = {Xk∆}k∈Z. Note that it is meaningful to multiply Ωn by ∆ in (6.2)
when estimating the long-run variance Π(X) of the continuous time process X = {XT }t∈R since

∆ ·Π(X∆) =

∞∑
k=−∞

ΓX(k∆)∆ ≈
∫
R
ΓX(u)du = Π(X). (6.6)

The discrete versions of other introduced estimators, namely, (3.1), (5.4), (5.6) and (5.9), are defined
in an analogous fashion by discretizing all the integrals involved.
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6.2 Model-driven bandwidth selection
The discrete version Π̂T,∆ of the estimator of the long-run variance defined in (6.2) uses the band-
width m in (6.3), which requires a discrete version of ST,∆ of the continuous-time bandwidth ST

defined in (2.4). We focus here on the optimal continuous-time bandwidth Sopt,T in (2.4). In
Section 2, we discussed two ways of computing Sopt,T and, more specifically, the constant Cν(X)
entering Sopt,T : the data-driven and the model-driven approaches. The data-driven approach for
discrete sample is discussed in Section 6.3 below. For the model-driven approach, it was suggested
to use a linear oscillator with white noise excitation (see Appendix A) as an underlying model. The
question then is how to fit such continuous-time model given a discrete sample.

The problem of fitting a linear oscillator with white noise excitation from discrete sample has
been studied quite extensively in the literature (in fact, not just for a linear oscillator but for the
more general class of the so-called continuous AR models). See e.g. Soderstrom et al. (1997), Fan
et al. (1999), Kirshner et al. (2014), Lin and Lototsky (2011; 2014), Pham (2000). As discussed in
these references, there are delicate issues in how a discrete version of a linear oscillator is formulated
and fitted to the data (assuming the linear oscillator is indeed the underlying model). For example,
a scheme that works is to use the following discretization of the derivatives at t = k∆,

Ẍt :
Xt+3∆ − 2Xt+2∆ +Xt+∆

∆2
=: (∆2X)t,

Ẋt :
Xt+∆ −Xt

∆
=: (∆X)t, (6.7)

and to estimate the coefficients of the model by regressing (∆2X)t on −(∆X)t and −Xt. See
Soderstrom et al. (1997), Example 3.3 on page 662. An estimator of the coefficient σ controlling
the strength of the white noise excitation (see Appendix A) can also be given. Other “valid”
discretization schemes are available as well, but in our simulations, we use the discretization scheme
(6.7) only.

6.3 Connections to discrete time analysis
We noted following the relation (6.5) that the quantity Ωn in (6.2) is a commonly used estimator of
the long-run variance Π(X∆) of the discrete-time series X∆ = {Xk∆}k∈Z. It is naturally multiplied
by ∆ in (6.2) in view of (6.6). From the perspective of confidence intervals (2.8)–(2.9), note that
the standard error of the sample mean used in the intervals is√

Π̂T,∆(X)

T
=

√
∆ · Ωn

T
=

√
Ωn

n
, (6.8)

which is exactly the same if the whole analysis is carried out for the discrete sample itself, without
any reference to the continuous-time process.

Despite the latter conclusion, however, a more delicate issue concerns the choice of the band-
width m when used with the discrete sample Xk∆, k = 1, . . . , n. The bandwidth m was defined in
(6.3) by relating it to a discrete version ST,∆ of the continuous-time bandwidth ST , but it can also
be defined with the reference to the underlying discrete-time series X∆ = {Xk∆}k∈Z alone. For a
discrete-time series X∆, the optimal bandwidth is defined as (Lu and Park (2014))

mopt =
(νK2

νCν(X∆)
2∫

K(x)2dx
n
)1/(2ν+1)

, (6.9)
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where ν and Kν are associated with a kernel function K as in Section 2,

Cν(X∆) =
Λν(X∆)

Π(X∆)
(6.10)

and
Λν(X∆) =

∞∑
k=−∞

|k|νΓX∆
(k), Π(X∆) =

∞∑
k=−∞

ΓX∆
(k) (6.11)

with ΓX∆
(h) = EX0Xh∆−µ(X)2. It is not immediate to see but the two optimal bandwidths (6.9)

and (2.4) are, in fact, connected in a natural way, as we explain next.

6.3.1 The case of the data-driven approach

To understand the relationship between the optimal bandwidths (6.9) and (2.4), consider first the
case of the data-driven approach. In this approach and with discrete sample, the constant Cν(X∆)
in (6.10) is estimated as

Ĉν(X∆) =
Λ̂ν(X∆)

Π̂(X∆)
, (6.12)

where

Π̂(X∆) =
n−1∑

j=−(n−1)

K
( j

m0

)
Γn(j), Λ̂ν(X∆) =

n−1∑
j=−(n−1)

K
( j

m0

)
|j|νΓn(j) (6.13)

and m0 is some preliminary crude estimate of the bandwidth. But note that

∆ · Π̂(X∆) =

(T−∆)/∆∑
j=−(T−∆)/∆

K
( j∆

m0∆

)
ΓT (j∆)∆ =: Π̂T,∆(X), (6.14)

∆ν+1 · Λ̂ν(X∆) =

(T−∆)/∆∑
j=−(T−∆)/∆

K
( j∆

m0∆

)
|j∆|νΓT (j∆)∆ =: Λ̂ν,T,∆(X). (6.15)

The quantities Π̂T,∆(X) and Λ̂T,∆(X) are the discrete-time estimators of the constants Π(X) and
Λν(X) when using the bandwidth S0,T = m0∆, and would similarly appear in the data-driven
discrete-time estimator of the constant Cν(X) in (2.5), that is,

Ĉν,∆(X) =
Λ̂ν,T,∆(X)

Π̂T,∆(X)
. (6.16)

The relations (6.14) and (6.15) show that

Ĉν,∆(X) = ∆ν+ 1
2 Ĉν(X∆) (6.17)

as long us the underlying bandwidths satisfy

S0,T = m0∆. (6.18)
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The relation (6.17) then implies that (the discrete estimator of) the optimal bandwidth Sopt,T in
(2.4) and (the estimator of) the optimal bandwidth mopt in (6.9) are related as

Sopt,T = mopt∆. (6.19)

Thus, in view of (6.8) and in the case of the data-driven approach, when the optimal bandwidths
are used with the underlying bandwidths satisfying (6.18), inference about the sample mean is
exactly the same when applying the discrete time series analysis to the series X∆ and when the
analysis is based on the assumption of the underlying continuous-time process X.

6.3.2 The case of the model-driven approach

Turning to the relationship between the optimal bandwidths (6.9) and (2.4) in the model-driven
approach, the situation is more delicate and we shall make just a few points through a concrete
example.

For discrete-time series, commonly chosen underlying models for the bandwidth calculation
are the AR series (Andrews (1991), Lu and Park (2014)). For example, for the AR(2) series
Y = {Yn}n∈Z satisfying Yn−ϕ1Yn−1−ϕ2Yn−2 = σZZn with white noise series {Zn} and coefficients
ϕ1, ϕ2, σZ , and when ν = 2, one has

Π(Y ) =
σ2
Z

2π

1

(1− ϕ1 − ϕ2)2
, Λ2(Y ) =

σ2
Z

2π

8ϕ2 + 2ϕ1 − 2ϕ1ϕ2

(1− ϕ1 − ϕ2)4

(e.g. Andrews (1991)). Then,
C2(Y ) =

8ϕ2 + 2ϕ1 − 2ϕ1ϕ2

(1− ϕ1 − ϕ2)2
(6.20)

and in the model-driven approach, this constant would be estimated as

Ĉ2(Y ) =
8ϕ̂2 + 2ϕ̂1 − 2ϕ̂1ϕ̂2

(1− ϕ̂1 − ϕ̂2)2
, (6.21)

where ϕ̂1, ϕ̂2 are the AR(2) parameters estimated from a discrete sample. Since the AR(2) series
can exhibit oscillatory behavior, this series also seems natural to consider for discrete-time series
Y = X∆.

On the other hand, there is an analogous constant C2(X) for the model-driven approach in the
continuous time supposing a linear oscillator with white noise excitation, defined by (A.1) and (A.2)
in Appendix A and characterized by the parameters δ, w2

0 and σ. For this model (see Appendix
A),

Π(X) =
σ2

w4
0

, Λ2(X) =
4(2δ2 − w2

0)σ
2

w8
0

,

so that
C2(X) =

4(2δ2 − w2
0)

w4
0

. (6.22)

What is the relationship between the constant Ĉ2(Y ) in (6.21) when Y = X∆ and the constant
C2(X), assuming that a linear oscillator with the white noise excitation is the underlying continuous-
time model?
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To answer this question, let ϕ̂1, ϕ̂2 be the AR(2) coefficients estimated from the sample Xk∆,
k = 1, . . . , n. These are the regression coefficients when regressing X(k+2)∆ on X(k+1)∆ and Xk∆,
respectively. On the other hand, let −2δ̂1 and −ŵ2

1,0 be the regression coefficients when regressing
(X(k+2)∆−2X(k+1)∆+Xk∆)/∆

2 (which can be thought as a discrete version of Ẍk∆) on (X(k+1)∆−
Xk∆)/∆ (which can be thought as a discrete version of Ẋk∆) and Xk∆. By comparing the two
regressions, note that

ϕ̂1 = 2− 2δ̂1∆, ϕ̂2 = −1 + 2δ̂1∆− ŵ2
1,0∆

2. (6.23)

Then, substituting these expressions into (6.21), we obtain that

Ĉ2(X∆) =
4(2δ̂21 − ŵ2

1,0 − δ̂1ŵ
2
1,0∆)

ŵ4
1,0

(6.24)

It is known (see Soderstrom et al. (1997), Example 3.3 on page 662) that

δ̂1
p→ 2

3
δ, ŵ2

1,0
p→ w2

0, (6.25)

as ∆ → 0, where p→ denotes the convergence in probability. Thus,

Ĉ2(X∆)
p→ 4(2(2/3)2δ2 − w2

0)

w4
0

̸= 4(2δ2 − w2
0)

w4
0

= C2(X). (6.26)

That is, the two constants in the limit of ∆ → 0 are slightly different, and the two analyses, the
discrete-time series analysis for the series X∆ and the continuous-time process analysis for X, would
give slightly different results in the model-driven approach.

Remark 6.1. In the regression above, we used the discretization scheme

Ẍt :
Xt+2∆ − 2Xt+∆ +Xt

∆2
,

Ẋt :
Xt+∆ −Xt

∆
, (6.27)

for the underlying oscillator but it did not lead to the consistent estimators as noted in (6.25). A
discretization scheme leading to consistent estimators was given in (6.7). Since this scheme involves
Xt+3∆, Xt+2∆, Xt+∆ and Xt, it may appear to correspond to fitting an AR(3) series to the discrete
sample Xk∆, k = 1, . . . , n. But note that the regression of (∆2X)t on (−∆X)t and (−Xt) for
t = k∆ has the coefficient equal exactly to 2 at Xt+2∆ since Xt+2∆ appears with a factor of (−2) in
(∆2X)t and not in (−∆X)t, nor in (−Xt). Thus, using the consistent discretization scheme would
not be equivalent to fitting the AR(3) series to the discrete sample Xk∆, k = 1, . . . , n.

6.4 Range of discretization step ∆

As the discretization step ∆ approaches 0, the discrete version Π̂T,∆ of the estimator of the long-
run variance converges to Π̂T (X), which itself converges to the long-run variance under suitable
assumptions (e.g. Lu and Park (2014)). Thus, the estimator Π̂T,∆ should stabilize as ∆ becomes
small. On the other hand, as ∆ increases, we should see deviations of Π̂T,∆ from Π̂T and hence
also from the long-run variance itself. For what values of ∆ do these deviations occur?
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Figure 1: Estimated long-run variance Π̂T,∆ against different choices of ∆. Five estimates are
plotted for each ∆, using the data-driven approach with the QS kernel (see Section 2). Estimates are
made for long-run variance of the original series Π̂T,∆(X) (top row), the squared series Π̂T,∆(X

2)
(bottom row), under both white noise (left column) and correlated excitations (right column).
Model parameters are as in Section 7.1, and the models are defined in Appendix A. Solid (horizontal)
line gives true long-run variance; dashed (vertical) line marks Tm

4 .

From numerical simulations across a range of oscillatory processes, we find that the estimator
Π̂T,∆ is quite stable up to about

∆max =
Tm

4
, (6.28)

where Tm is the modal period of the oscillation associated with the frequency at which the spectrum
is largest. This is illustrated in Figure 1 where the estimates Π̂T,∆(X) (top row) and Π̂T,∆(X

2)
(bottom row) are plotted for several realizations of a linear oscillator with white noise excitation
(left panel) and correlated excitation (right panel). The model parameters are the same as used
in Section 7.1 below, and the models are defined in Appendix A. The value of ∆max in (6.28) is
indicated by a vertical dashed line, and the true value of the long-run variance by a horizontal.
(Note that the long-run variance Π(X) is zero in the case of correlated excitation, in which case
the corresponding plot only serves to show similar variability of the estimates up to ∆max.)

Note also that ∆max in (6.28) is natural in the sense that
∫ u0+Tm

u0
ΓX(u)du (that is, the integral

of ΓX(u) over its one approximate period of oscillation, as part of the long-run variance Π(X)) is
expected to be approximated well enough by the integral discretized at step ∆, as long as ∆ ≤ ∆max.
The latter is not meant as a rigorous statement. Note that if ∆ > ∆max, e.g. ∆ = Tm/2 or Tm,
then the discretization of the above integral could “pick up” only e.g. time points where ΓX(u)
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crosses zero (so that the discrete approximation will no longer be expected to be good).

6.5 Choice of time scale
Another practical issue, although not directly related to discretization, is the choice of a time scale.
That is, whereas for discrete samples, the index scale is always the set of integers, a time scale for
continuous-time process is subject to the practitioner’s choice. For example, half an hour of data
can be associated with T = 1, 800 seconds (the time scale of seconds), as well as T = 1/2 hour (the
time scale of hours). The practitioner should be aware of several implications of the choice of a
time scale on the analysis.

We shall add a subscript, 1 or 2, to the quantities below to refer to the time scale 1 or 2,
respectively (e.g. T1 = 1, 800 seconds and T2 = 1/2 hours). The key observation here is that the
value of the long-run variance Π(X) in (1.2) actually depends on the chosen time scale. Indeed,
note that

Π2(X) =

∫
R
Γ2,X(u2)du2 =

T2

T1

∫
R
Γ2,X

(T2

T1
u1

)
du1 =

T2

T1

∫
R
Γ1,X(u1)du1 =:

T2

T1
Π1(X), (6.29)

since the relation between the two time scales is u1 = (T1/T2)u2. But observe also that the time
scale does not affect the variance of the sample mean, which would be used in the confidence
intervals (see (2.8) and (2.9)), since

Π2(X)

T2
=

Π1(X)

T1
.

The choice of a time scale affects similarly the estimators of the long-run variance. Indeed, note
that, by arguing similarly as above,

Π̂2,T2(X) =

∫ T2

−T2

K
( u2
ST2

)
ΓT2(u2)du2 =

T2

T1

∫ T1

−T1

K
( u2
ST2(T1/T2)

)
ΓT1(u1)du1 =

T2

T1
Π̂1,T1(X),

since ST2(T1/T2) = ST1 for optimal bandwidths ST1 = Sopt,1,T1 and ST2 = Sopt,2,T2 . The latter
relation follows by observing similarly that

C2,ν(X) =
Λ2,ν(X)

Π2(X)
=

(T2/T1)
ν+1Λ1,ν(X)

(T2/T1)Π1(X)
=

(T2

T1

)ν
C1,ν(X)

and hence indeed

Sopt,2,T2 =
(νK2

νC
2
2,ν(X)∫

K(x)2dx
T2

)1/(2ν+1)
=

(νK2
νC

2
1,ν(X)∫

K(x)2dx

(T2

T1

)2ν+1
T1

)1/(2ν+1)
=

T2

T1
Sopt,1,T1 .

Remark 6.2. The choice of a time scale does, however, affect one aspect of our analysis. The
data-driven approach for estimating Π(X) and Λν(X) in the constant Cν(X) in (2.5) (see the
discussion following Remark 2.1) involves a preliminary choice of the bandwidth ST , which was
suggested as

√
T . Note that the latter choice depends on the time scale. Moreover, the choice

of
√
T was motivated by the fact that

√
T should be smaller than T and that

√
T/T → 0, as

T → ∞. A downside is that
√
T is a meaningless choice in the case when T < 1 (e.g. T = 1/2

hour). As another possibility which does not have this problem and adapts naturally to the chosen
time scale, a preliminary choice of ST can be determined from the “decorrelation” method. This
is an ad hoc method sometimes used in practice with ST chosen as a time point where the sample
autocorrelation function falls below a certain level (see Section 7.1 for a more detailed description).
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7 Numerical results
In this section, we examine the methods proposed in Sections 2-6 through a simulation study
(Section 7.1) and an application to real data (Section 7.2).

7.1 Simulation study
The simulation results presented in this section concern several synthetic processes often used in
modeling oscillatory phenomena: a linear oscillator defined by (A.1) and (A.2), and a nonlinear
(piecewise linear) oscillator defined by (A.1) and (A.3), in both cases with either a white noise
excitation having a spectral density (A.4) or the correlated excitation having a spectral density
(A.5). In the case of a linear oscillator, the parameters used are ω0 = 0.6, δ = 0.09, and σ = 0.07
(the white noise excitation), σ = 0.7, Hs = 9, T1 = 11.595 (the correlated excitation). In the
case of a piecewise linear oscillator, we take ω0 = 0.6, δ = 0.09, k1 = 0.1, xm = π/6, and the same
parameters for the white noise and correlated excitations as in the linear case.

Tables 2–5 present simulation results for the linear and nonlinear oscillators with white noise and
correlated excitations: Table 2 concerns the linear oscillator with a white noise excitation, Table 3
concerns the linear oscillator with a correlated excitation, Table 4 is for the piecewise linear oscillator
with a white noise excitation, and Table 5 is for the piecewise linear oscillator with a correlated
excitation. The first column in the tables indicates the length of the record (that is, T = 50 or 100
hours), with the associated simulated process sampled at ∆ = 1/2 second. The considered record
lengths are typical to ship rolling applications. The second column indicates the kernel used in the
estimation: QS for the Quadratic Spectral and B for the Bartlett kernel (see Section 2). The third
column refers to the method used for estimation: “data” for the data-driven approach, “model” for
the model-driven approach, “fixed” for estimation with a fixed bandwidth ST =

√
T , “decor.” for

the decorrelation method and “self-norm” for the self-normalization approach. The decorrelation
method is an ad hoc method sometimes used in practice where the bandwidth ST is chosen as the
cutoff point where an envelope of the autocorrelation function of the process crosses the level 0.05
(that is, 5% of the sample autocovariance) for the first time.

The next three columns in the tables present results when estimating the long-run variances
Π(X), Π(X2) and Π(X,X2). There are two entries in each box associated with a particular
estimation scheme: the top entry gives the bias in estimation and the bottom entry gives the
standard deviation in estimation, computed from 100 replications. We also note that the true value
of Π(X), Π(X2) and Π(X,X2) can be computed through explicit formulae in the case of a linear
oscillator (see Appendix A), but that this is not the case for a piecewise linear oscillator, in which
case we use an estimate from a record of 10,000 hours.

The fifth column of the tables presents the empirical coverage proportions of the proposed 95%
confidence intervals for the mean µ(X) (the top entry in each box associated with a particular
estimation scheme) and the standard deviation σ(X) (the bottom entry in each box). As with
the long-run variances above, the true standard deviation σ(X) can be computed for the linear
oscillator, but not for the nonlinear oscillator, in which case we use an estimate from a record of
10,000 hours. Finally, the last column of the tables gives the average half length of the corresponding
confidence intervals (for the mean on the top, and for the standard deviation on the bottom). We
also note that in Table 3, the last two rows report on the empirical coverages of the confidence
intervals using quantiles, following Section 4.

Several conclusions can be drawn from Tables 2–5. First, the decorrelation method seems to
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be the worst in general, both in terms of estimating long-run variances and coverages of confidence
intervals. Second, the model-driven approach seems to perform best in general in terms of estimat-
ing long-run variances, in both linear and nonlinear cases. The performances of the data-driven
and fixed approaches are difficult to discern, as are the confidence intervals among all 3 methods:
model-driven, data-driven and fixed. Third, as expected, the confidence intervals for the mean
µ(X) have 100% coverage in Table 3 – the appropriate shorter confidence intervals based on the
quantile method have coverage close to 95%. Fourth, regarding the use of different kernels, esti-
mation using the QS kernel seems generally superior to that for the Bartlett kernel, at least when
the model-driven approach is used. Fifth, the self-normalization approach works quite well but as
noted above, its confidence intervals are wider on average.

Tables 6–7 present simulation results in estimation of the long-run variance when multiple
records are given. Table 6 is for a linear oscillator, and Table 7 is for a piecewise linear oscillator.
The oscillator parameters are the same as those used in Tables 2–5. For both cases, R = 10
records of length Tr = 5 minutes each are considered. Three different methods of estimating Π(X)
(corresponding to Xt in the first column) and Π(X2) (X2

t in the first column) are examined: the
proposed new (“mean-all”), the average (“separate”) and the direct methods (see Section 5). The
Kernel and Method columns are the same as in Tables 2–5, except that the decorrelation method
is excluded. The entries in each box associated with a particular estimation scheme now indicate
the bias (top entry), the standard deviation (middle entry), and the mean-squared error (bottom
entry). The entries with the smallest mean-squared errors are indicated in bold.

It can be seen from Tables 6–7 that the proposed estimator (mean-all) has superior performance
in the largest number of cases and always performs better when the model-based approach and the
QS kernel are used. This approach/kernel was suggested above as superior for single records.

We have also produced tables in the case of multiple records that are analogous to Tables 2–5
but will not include them for the shortness sake. Few observations, however, stood out from these
unreported simulations. First, the negative bias in estimation of the long-run variance (as in several
cases in Tables 6–7) led naturally to smaller coverage proportions. Second, the self-normalization
approach again produced wider confidence intervals on average but the increase factor over the
long-run variance approach was larger for multiple records than in the case of a single record.

7.2 Data application
We illustrate here the proposed methodology on the data generated by a high-fidelity ship motion
simulation code (more specifically, Large Amplitude Motion Program or LAMP of Lin and Yue
(1991)). The data in question concerns loads at a particular point of a ship. The time plot of the
data is depicted in Figure 2 (left). The duration of the record is T = 819 seconds (with the first 20
seconds discarded), and we consider a sampling rate ranging from ∆ = 0.02 to ∆ = 0.16 seconds.
We are interested in providing confidence intervals for the mean and the standard deviation of the
underlying process.

As a first step, we need to decide whether the data points to the degenerate case. As discussed
in Section 4, the degenerate case is associated with the fact that the process

∫ t
0 (Xs − µ(X))ds is

stationary (and vice-versa, the non-degenerate case with the process being non-stationary). The
time plot of the sample analogue of the process, namely, the discrete version of

∫ t
0 (Xs −XT )ds, is

given in Figure 2 (right). To see whether the non-degenerate case can be assumed, we postulate it
as a null hypothesis to be tested. We use the well-known augmented Dickey-Fuller (ADF) test for
the null hypothesis – see e.g. Chapter 3 in Pfaff (2008). The test statistic value is -24.3202, and
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Figure 2: Time series data simulated from LAMP. Left: the series itself with ∆ = 0.02. Right: the
discrete version of

∫ t
0 (Xs −XT )ds.

the critical value is -2.58 at α = 1% (-1.95 at α = 5%). Based on these values, we reject the null
hypothesis, i.e. conclude that the data is consistent with the degenerate case.

Proceeding with the methods proposed in the degenerate case, the sample mean of the process
with ∆ = 0.02 (the smallest available) is 313739.6, and the corresponding 95% confidence intervals
for the mean for several choices of ∆ are shown in Figure 3 (left).

To construct confidence intervals for the standard deviation for the LAMP series, we need only
look at the squared series to estimate its long-run variance (see Section 4). The squared series and
its integrated series are plotted in Figure 4. The ADF test gives a test statistic value of -2.3433;
as expected, we consider the squared series to be non-degenerate and proceed with the methods
proposed in Section 3, using the QS kernel and a fixed bandwidth of

√
T . The sample standard

deviation of the process with ∆ = 0.02 is 28119779, and the corresponding 95% confidence intervals
are shown in Figure 3 (right). The confidence intervals for the standard deviation obtained from
the self-normalization approach were, in fact, similar to those in Figure 3 and will not be reported
for the shortness sake.

8 Conclusions
The focus of this work has been on inference (i.e. confidence intervals) for the mean and variance
of random oscillatory processes by making use of either estimation of the long-run variance of the
system or the self-normalization approach. We considered processes with both positive long-run
variance, as well as the “degenerate case” with zero long-run variance; analysis of the latter required
different estimation techniques. Additionally, we examined the case of multiple independent records
of the same stochastic process, from which we developed a more promising method of estimation.
We presented numerical results of the proposed methods through a simulation study, demonstrating
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Figure 3: Confidence intervals for the mean from the LAMP series for different sampling rates.
Left: confidence intervals for the mean. Right: confidence intervals for the standard deviation.

the performance of these estimators.
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A Oscillatory systems of interest
We describe here several oscillatory processes that are used and referred to in this work. In the
simulations of Section 7.1, we consider an oscillator Xt satisfying the general equation

Ẍt + 2δẊt + r(Xt) = Zt. (A.1)

Here, δ > 0 is a damping parameter, r(x) is a restoring force and Zt is an external excitation. A
linear oscillator corresponds to a linear restoring function

r(x) = w2
0x, (A.2)
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Figure 4: Time series data simulated from LAMP and squared. Left: the squared series itself with
∆ = 0.02. Right: the discrete version of

∫ t
0 (X

2
s −X2

T )ds.

where w0 is a natural frequency parameter. A nonlinear oscillator is associated with a nonlinear
restoring force. In Section 7.1, we use a piecewise linear oscillator with a restoring force

r(x) =


−k1w

2
0(x+ xm)− w2

0xm, x < −xm,
w2
0x, −xm < x < xm,

−k1w
2
0(x− xm) + w2

0xm, x > xm,
(A.3)

that is, where the restoring force has a negative slope (−k1w
2
0) in the nonlinear regime |x| > xm.

Though other nonlinear oscillators (e.g. the Duffing oscillator) could be considered as well.
Two forms of the external excitation are considered. First, there is a white noise excitation

Zt = σẆt, where Wt is a standard Brownian motion and σ > 0 is the parameter controlling the
strength of the excitation. Its spectral density can be thought as

SZ(w) = σ2. (A.4)

Second, motivated by ship rolling applications, we also consider a stationary Gaussian excitation
having a spectral density

SZ(w) = w4
0

(w2

g

)2 A

w5
e−

B
w4 , w > 0, (A.5)

where w0 is as in (A.2) and (A.3) and g = 9.807 is the gravitational acceleration. The parameters
A and B are taken as A = 173H2

sT
−4
1 and B = 691T−4

1 , where Hs is a significant wave height, i.e.
twice the amplitude in meters of the highest one-third of waves, and T1 is the period corresponding
to the mean frequency of waves.

We also note that the spectral density of the linear oscillator with excitation Z is given by

SX(w) =
SZ(w)

(w2
0 − w2)2 + (2δw)2

. (A.6)
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Since SZ(0) = 0 for the correlated excitation with the spectral density (A.5), we have SX(0) = 0
for the linear oscillator with the correlated excitation. Thus, in view of (4.1), this oscillator falls
into the degenerate case.

A convenient fact about a linear oscillator with a white noise excitation is that its autocovariance
function can be computed explicitly as follows. In view of (2.7) and (A.6), we have

ΓX(h) =
1

2π

∫
R

cos(hw)SX(w)dw =
σ2

π

∫ ∞

0

cos(hw)
(w2

0 − w2)2 + (2δw)2
dw

=
σ2

π

∫ ∞

0

cos(hw)
w4 + 2w2

0w
2(2(δ/w0)2 − 1) + w4

0

dw =
σ2

π

∫ ∞

0

cos(hw)
w4 + 2w2

0w
2 cos(2t) + w4

0

dw,

where cos(2t) = 2(δ/w0)
2 − 1 with 0 < t < π/2, assuming that

δ < w0.

Then, by using Formula 3.733.1 in Gradshteyn and Ryzhik (2014), p. 428,

ΓX(h) =
σ2

2w3
0 sin(2t)e

−hw0 cos(t) sin(t+ hw0 sin(t))

=
σ2

4w0δ
√

w2
0 − δ2

e−hδ sin(t+ h
√

w2
0 − δ2), (A.7)

by using the facts that w0 cos(t) = δ and w0 sin(t) =
√
w2
0 − δ2. This also allows one to compute

explicitly the long-run variance of the process as: by using Formula 3.893.1 in Gradshteyn and
Ryzhik (2014), p. 486,

Π(X) =

∫ ∞

0
ΓX(h)dh =

σ2

w3
0 sin(2t)

∫ ∞

0
e−hw0 cos(t) sin(t+ hw0 sin(t))dh

=
σ2

w3
0 sin(2t) ·

1

w2
0 cos2(t) + w2

0 sin2(t)

(
w0 sin(t) cos(t) + w0 cos(t) sin(t)

)
=

σ2

w4
0

. (A.8)

Note that this is also the same as SX(0). One can also compute Λ2(X) in (2.5)–(2.6) explicitly (see
Remark 2.1) as

Λ2(X) = (−1)
d2SX(ω)

dω2

∣∣∣
w=0

=
4σ2(2δ2 − ω2

0)

ω8
0

. (A.9)

In the Gaussian case, which we assume for a linear oscillator with a white or uncorrelated
excitation, long-run variances associated with the squares of the process can be calculated by using
the well-known relations

ΓX2(h) = 2(ΓX(h))2, ΓX,X2(h) = 0. (A.10)

For nonlinear oscillators (with any excitation), no explicit formulae are known for either the
spectral density or the autocovariance function.
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Hours Kernel Method Π(X) Π(X2) Π(X,X2) Coverage prop. Interval length
50 QS data 7.27e-02 1.29e+00 2.38e-01 0.96 1.29e-02

4.97e-01 1.28e+01 1.88e+00 0.91 1.44e-02
50 QS model 7.74e-02 -3.41e+00 6.66e-02 0.95 1.29e-02

1.48e-01 5.45e+00 6.01e-01 0.93 1.42e-02
50 QS fixed -7.09e-02 -2.49e+00 -1.84e-01 0.95 1.28e-02

5.13e-01 1.20e+01 2.03e+00 0.96 1.42e-02
50 QS decor. 2.90e-01 -1.10e+01 3.48e-02 0.98 1.31e-02

1.02e-01 4.56e+00 3.84e-01 0.92 1.39e-02
50 B data 4.96e-01 -1.26e+01 1.49e-01 0.97 1.32e-02

5.93e-01 1.17e+01 6.00e-01 0.95 1.38e-02
50 B model 1.89e-01 -5.62e+00 -5.67e-03 0.96 1.30e-02

1.99e-01 5.85e+00 7.69e-01 0.95 1.41e-02
50 B fixed 6.59e-02 -2.31e+00 -9.29e-02 0.98 1.29e-02

4.08e-01 1.06e+01 1.59e+00 0.95 1.42e-02
50 B decor. 1.00e+00 -2.50e+01 -6.63e-03 0.98 1.36e-02

1.18e-01 3.86e+00 3.70e-01 0.94 1.33e-02
50 - self-norm - - - 0.95 1.72e-02

0.97 2.05e-02
100 QS data 7.21e-02 4.34e-01 -1.69e-01 0.93 9.11e-03

4.40e-01 9.59e+00 1.67e+00 0.93 1.02e-02
100 QS model 7.10e-02 -2.00e+00 -1.63e-02 0.95 9.12e-03

1.14e-01 4.04e+00 4.23e-01 0.93 1.01e-02
100 QS fixed 1.71e-02 -7.73e-02 2.27e-02 0.98 9.08e-03

3.78e-01 9.48e+00 1.69e+00 0.95 1.01e-02
100 QS decor. 2.91e-01 -1.09e+01 -5.00e-03 0.96 9.24e-03

8.37e-02 3.02e+00 2.69e-01 0.93 9.83e-03
100 B data 3.56e-01 -8.54e+00 2.57e-02 0.96 9.28e-03

3.44e-01 8.46e+00 4.74e-01 0.98 9.89e-03
100 B model 1.11e-01 -3.11e+00 5.07e-02 1.00 9.14e-03

2.07e-01 4.87e+00 5.78e-01 0.96 1.01e-02
100 B fixed -2.52e-02 -2.40e+00 6.85e-02 0.97 9.06e-03

3.58e-01 7.88e+00 1.13e+00 0.96 1.01e-02
100 B decor. 9.99e-01 -2.60e+01 5.46e-03 0.99 9.64e-03

7.41e-02 2.33e+00 2.57e-01 0.94 9.38e-03
100 - self-norm - - - 0.95 1.13e-02

0.98 1.440e-02

Table 2: Simulation results for the linear oscillator with white noise excitation. See Section 7.1
for discussion.
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Hours Kernel Method Π(X) Π(X2) Π(X,X2) Coverage prop. Interval length
50 QS data 1.47e-07 1.07e-04 -2.25e-08 1.00 1.57e-06

1.55e-07 1.72e-05 1.97e-07 0.95 5.38e-04
50 QS model 1.58e-07 9.83e-05 -4.84e-09 1.00 1.63e-06

1.42e-07 6.52e-06 8.54e-08 0.96 5.27e-04
50 QS fixed 1.27e-07 1.10e-04 -1.59e-09 1.00 1.44e-06

1.26e-07 1.62e-05 1.88e-07 0.94 5.42e-04
50 QS decor. 1.23e-07 8.73e-05 -1.44e-09 1.00 1.43e-06

1.24e-07 5.57e-06 4.63e-08 0.95 5.12e-04
50 B data 5.53e-05 1.04e-04 2.20e-08 1.00 3.43e-05

2.26e-06 1.40e-05 1.71e-07 0.96 5.35e-04
50 B model 1.14e-04 1.02e-04 -4.13e-10 1.00 4.94e-05

1.02e-06 1.10e-05 9.69e-08 0.93 5.31e-04
50 B fixed 5.72e-05 1.03e-04 1.47e-08 1.00 3.49e-05

6.44e-07 1.38e-05 1.10e-07 0.95 5.33e-04
50 B decor. 1.01e-03 6.35e-05 -1.14e-08 1.00 1.47e-04

3.08e-05 4.52e-06 2.87e-07 0.95 4.80e-04
50 - self-norm - - - 1.00 5.38e-06

0.95 6.90e-04
50 - quantile - - - 0.943 1.70e-08
100 QS data 7.61e-08 1.09e-04 1.06e-08 1.00 8.29e-07

6.20e-08 1.19e-05 1.14e-07 0.88 3.82e-04
100 QS model 6.92e-08 1.00e-04 -1.76e-09 1.00 7.86e-07

5.23e-08 4.98e-06 2.84e-08 0.89 3.74e-04
100 QS fixed 6.79e-08 1.07e-04 -1.96e-08 1.00 7.59e-07

6.99e-08 1.32e-05 1.05e-07 0.90 3.81e-04
100 QS decor. 6.15e-08 8.64e-05 4.90e-10 1.00 7.12e-07

6.22e-08 4.60e-06 1.98e-08 0.88 3.62e-04
100 B data 4.34e-05 1.06e-04 -9.07e-09 1.00 2.15e-05

1.35e-06 1.01e-05 8.62e-08 0.96 3.80e-04
100 B model 9.05e-05 1.04e-04 2.29e-10 1.00 3.11e-05

5.86e-07 8.02e-06 7.00e-08 0.98 3.78e-04
100 B fixed 4.05e-05 1.05e-04 -5.15e-10 1.00 2.08e-05

2.90e-07 9.86e-06 1.29e-07 0.93 3.78e-04
100 B decor. 1.01e-03 6.31e-05 9.26e-09 1.00 1.04e-04

2.15e-05 4.00e-06 2.23e-07 0.91 3.39e-04
100 - self-norm - - - 1.00 2.53e-06

0.92 5.18e-04
100 - quantile - - - 0.955 8.47e-09

Table 3: Simulation results for the linear oscillator with correlated excitation. See Section 7.1 for
discussion.

29



Hours Kernel Method Π(X) Π(X2) Π(X,X2) Coverage prop. Interval length
50 QS data 2.84e-05 2.15e-03 -1.22e-04 0.92 9.29e-04

2.76e-03 3.41e-03 1.73e-03 0.95 2.09e-03
50 QS model 5.01e-04 -5.76e-04 -4.41e-06 0.97 9.35e-04

8.56e-04 1.73e-03 8.94e-04 0.96 2.02e-03
50 QS fixed 3.43e-06 2.52e-03 4.08e-04 0.99 9.29e-04

2.61e-03 3.52e-03 1.99e-03 0.94 2.10e-03
50 QS decor. 5.39e-04 -1.64e-04 6.31e-05 0.91 9.36e-04

8.91e-04 1.76e-03 7.66e-04 0.94 2.03e-03
50 B data 4.17e-03 -1.49e-03 -1.53e-04 0.97 9.76e-04

2.73e-03 3.04e-03 8.73e-04 0.94 1.99e-03
50 B model 1.84e-03 1.22e-04 -8.53e-05 0.94 9.50e-04

1.42e-03 2.47e-03 1.22e-03 0.95 2.04e-03
50 B fixed 7.85e-04 2.07e-03 2.21e-05 0.93 9.38e-04

2.29e-03 3.00e-03 1.62e-03 0.97 2.08e-03
50 B decor. 6.52e-03 -4.16e-03 -1.44e-05 0.98 1.00e-03

8.30e-04 1.61e-03 7.75e-04 0.95 1.92e-03
50 - self-norm - - - 0.96 1.21e-03

0.96 2.72e-03
100 QS data -1.22e-04 2.79e-03 3.64e-04 0.93 6.56e-04

2.54e-03 2.71e-03 1.79e-03 0.96 1.49e-03
100 QS model 4.45e-04 1.57e-04 -5.03e-05 1.00 6.61e-04

7.17e-04 1.39e-03 5.33e-04 0.98 1.44e-03
100 QS fixed 1.85e-04 2.14e-03 -9.14e-05 0.88 6.59e-04

2.01e-03 3.03e-03 1.67e-03 0.94 1.48e-03
100 QS decor. 5.40e-04 -4.02e-04 -6.01e-05 0.97 6.62e-04

6.51e-04 1.43e-03 5.87e-04 0.94 1.43e-03
100 B data 2.78e-03 -3.98e-04 6.14e-05 0.95 6.79e-04

1.79e-03 2.12e-03 6.34e-04 0.96 1.43e-03
100 B model 9.84e-04 1.57e-03 -4.11e-05 0.97 6.65e-04

1.19e-03 1.65e-03 7.90e-04 0.94 1.47e-03
100 B fixed 5.89e-04 2.63e-03 1.95e-04 0.96 6.62e-04

1.78e-03 2.19e-03 1.49e-03 0.96 1.48e-03
100 B decor. 6.71e-03 -4.33e-03 -4.11e-05 0.95 7.10e-04

5.82e-04 1.23e-03 4.92e-04 0.94 1.35e-03
100 - self-norm - - - 0.96 8.52e-04

0.97 1.93e-03

Table 4: Simulation results for the piecewise linear oscillator with white noise excitation. See
Section 7.1 for discussion.
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Hours Kernel Method Π(X) Π(X2) Π(X,X2) Coverage prop. Interval length
50 QS data -1.43e-03 2.81e-03 1.07e-05 0.94 5.35e-05

1.59e-05 4.17e-03 1.63e-04 0.93 2.38e-03
50 QS model -1.43e-03 -1.64e-03 -1.49e-05 0.98 5.51e-05

1.27e-05 2.22e-03 1.17e-04 0.93 2.28e-03
50 QS fixed -1.43e-03 3.61e-03 1.50e-05 0.91 5.36e-05

1.64e-05 4.42e-03 1.93e-04 0.90 2.40e-03
50 QS decor. -1.43e-03 -8.01e-04 -4.33e-06 0.96 5.49e-05

1.42e-05 2.15e-03 1.26e-04 0.91 2.30e-03
50 B data 2.03e-03 -1.19e-03 1.49e-07 1.00 2.75e-04

8.72e-04 2.69e-03 1.13e-04 0.98 2.28e-03
50 B model -3.22e-04 1.14e-03 -3.63e-07 1.00 1.63e-04

2.26e-05 2.91e-03 1.37e-04 0.98 2.34e-03
50 B fixed -7.23e-04 1.83e-03 2.60e-05 1.00 1.34e-04

2.16e-05 3.58e-03 1.39e-04 0.99 2.36e-03
50 B decor. 5.29e-03 -6.35e-03 -5.88e-06 1.00 3.82e-04

2.84e-04 1.99e-03 1.09e-04 0.91 2.16e-03
50 - self-norm - - - 1.00 1.66e-06

0.90 3.05e-04
100 QS data -1.43e-03 2.61e-03 1.18e-05 0.94 3.79e-05

1.16e-05 3.35e-03 1.44e-04 0.95 1.68e-03
100 QS model -1.43e-03 -6.35e-04 2.70e-06 0.97 3.89e-05

9.01e-06 1.43e-03 7.49e-05 0.97 1.63e-03
100 QS fixed -1.43e-03 2.19e-03 2.59e-05 0.95 3.79e-05

1.24e-05 3.74e-03 1.19e-04 0.93 1.67e-03
100 QS decor. -1.43e-03 -7.20e-04 2.40e-05 0.96 3.89e-05

9.19e-06 1.42e-03 8.64e-05 0.91 1.63e-03
100 B data 1.37e-03 -8.13e-04 -1.46e-06 1.00 1.76e-04

7.78e-04 1.89e-03 7.93e-05 0.96 1.62e-03
100 B model -5.51e-04 1.62e-03 -9.09e-06 1.00 1.04e-04

1.44e-05 2.35e-03 9.87e-05 0.94 1.66e-03
100 B fixed -9.26e-04 2.44e-03 -3.13e-06 1.00 8.27e-05

1.46e-05 3.07e-03 1.22e-04 0.90 1.68e-03
100 B decor. 5.27e-03 -6.09e-03 -1.43e-06 1.00 2.70e-04

1.78e-04 1.26e-03 8.96e-05 0.94 1.53e-03
100 - self-norm - - - 1.00 8.35e-07

0.90 2.17e-04

Table 5: Simulation results for the piecewise linear oscillator with correlated excitation. See
Section 7.1 for discussion.
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Series Kernel Method Separate Mean-all Direct
Xt QS data -0.6492 0.0002 1.4624

0.0410 0.0614 11.1956
0.4624 0.0614 13.3342

Xt QS model -0.7979 -0.2130 2.0293
0.0087 0.0125 8.9627
0.6453 0.0578 13.0807

Xt QS fixed -0.0885 0.0168 1.6874
0.0746 0.1122 7.5065
0.0825 0.1125 10.3537

Xt B data -0.7729 -1.2907 1.9251
0.3506 0.2105 9.5462
0.9480 1.8765 13.2522

Xt B model -0.0540 -0.4557 1.5672
0.0291 0.0191 9.3266
0.0320 0.2267 11.7828

Xt B fixed 0.0735 -0.1111 1.7914
0.0733 0.0494 8.7393
0.0787 0.0618 11.9486

X2
t QS data 1.8409 0.7258 3.4816

45.1346 44.7539 8442.4808
48.5234 45.2807 8454.6025

X2
t QS model 11.4759 11.2818 9.0762

18.6724 18.7036 6326.1594
150.3685 145.9823 6408.5360

X2
t QS fixed 3.4290 1.8819 -6.6153

66.8617 67.4763 8543.4466
78.6199 71.0178 8587.2089

X2
t B data 33.3687 32.0303 -10.4373

58.4451 56.7885 6685.3033
1171.9130 1082.7290 6794.2412

X2
t B model 13.8039 13.4828 10.6049

27.7812 27.8504 5690.6623
218.3299 209.6351 5803.1269

X2
t B fixed 4.5421 3.2672 -12.0358

44.0204 44.0750 6730.3875
64.6511 54.7495 6875.2490

Table 6: Simulation results for multiple records of the linear oscillator with white noise excitation.
See Section 7.1 for discussion.
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Series Kernel Method Separate Mean-all Direct
Xt QS data -8.9125e-03 -4.8590e-04 -1.7689e-04

7.4359e-06 3.3759e-06 3.4772e-04
8.6869e-05 3.6120e-06 3.4775e-04

Xt QS model -1.0305e-02 -1.1530e-03 7.1772e-04
3.6025e-07 4.5355e-07 2.5875e-04
1.0655e-04 1.7830e-06 2.5927e-04

Xt QS fixed -1.6811e-03 -5.9613e-05 -7.3207e-04
1.3867e-06 2.1663e-06 3.2782e-04
4.2126e-06 2.1699e-06 3.2835e-04

Xt B data -6.0523e-03 -1.3383e-02 2.6429e-04
3.1945e-05 2.9260e-05 3.5582e-04

6.8575e-05 2.0835e-04 3.5589e-04
Xt B model -1.7149e-04 -3.5594e-03 -3.1205e-03

1.1444e-06 7.8580e-07 4.0284e-04
1.1738e-06 1.3455e-05 4.1258e-04

Xt B fixed -4.9586e-05 -2.2208e-03 6.2363e-04
2.2776e-06 1.4943e-06 2.8804e-04

2.2800e-06 6.4264e-06 2.8843e-04
X2

t QS data -1.4019e-03 -1.6416e-03 -4.0445e-04
4.4542e-06 4.5681e-06 4.6088e-04

6.4195e-06 7.2628e-06 4.6104e-04
X2

t QS model 3.4570e-03 3.3914e-03 -3.9850e-03
2.1546e-06 2.1500e-06 2.6057e-04
1.4106e-05 1.3652e-05 2.7645e-04

X2
t QS fixed -1.6560e-03 -2.0158e-03 -5.6502e-03

6.1992e-06 6.4010e-06 3.9172e-04
8.9414e-06 1.0464e-05 4.2365e-04

X2
t B data 8.1631e-03 7.7285e-03 -7.1866e-03

6.3211e-06 6.3417e-06 4.3724e-04
7.2957e-05 6.6071e-05 4.8889e-04

X2
t B model 3.4164e-03 3.3269e-03 1.6838e-03

3.1475e-06 3.2081e-06 3.4893e-04
1.4819e-05 1.4276e-05 3.5176e-04

X2
t B fixed -4.1757e-04 -6.8928e-04 -3.2341e-03

4.0635e-06 4.1038e-06 3.3397e-04
4.2379e-06 4.5789e-06 3.4443e-04

Table 7: Simulation results for multiple records of the piecewise linear oscillator with correlated
excitation. See Section 7.1 for discussion.
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