
Technical appendix for “Asymptotic results for multivariate local

Whittle estimation with applications”

Marie-Christine Düker
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The detailed proofs for the results in the article “Asymptotic results for multivariate local
Whittle estimation with applications” are presented. Some additional comments on the article are
also provided, as well as some other details that go beyond what is solely necessary to justify the
results in the article. Thereby, we adopt the notation of the article and refer to its labels by adding
square brackets. For example, Theorem [2.1] here refers to Theorem 2.1 in the article.

Sections 1 and 2 below provide respectively the technical details for Sections [II] and [III] in
the article. We refrain from giving more details for Section [IV], since the article already provides
a proof of Theorem [4.1] with sufficient details. Section 3 gives additional numerical results for
Section [V] in the article.

1 Details for Section [II]

We provide here details for the proofs of the results in Section [II] of the article. Section 1.1 contains
the proof of Theorem [2.1], the asymptotic normality result for the local Whittle estimator. The
Sections 1.2, 1.3 and 1.4 shed additional light on Remarks [2.1], [2.2] and [2.3].

For the readers’ convenience, we first recall some notation from the article. We consider the
negative log-likelihood

`(D,G) =
1

m

m∑
j=1

(log |λ−Dj Gλ−Dj |+ tr(IX(λj)λ
D
j G
−1λDj )), (1.1)

where | · | and tr(·) denote the determinant and the trace of a matrix,

IX(λ) =
1

2πN

( N∑
n=1

Xne
−inλ

)( N∑
n=1

Xne
inλ
)′

is the periodogram for sample size N and m is the number of Fourier frequencies λj = 2πj/N
used in estimation. In order to define the parameter vector of interest, we introduce the matrix
G̃ = (g̃kl)k,l=1,...,p, g̃kl = gkk1{k=l} + r1,kl1{k>l} + r2,kl1{k<l}, where gkl = r1,kl + ir2,kl, and the

vector D̃ = (d1, . . . , dp)
′. Then, the parameter vector can be written as

θ =

(
vec(G̃)

D̃

)
. (1.2)
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The respective pairs of matrices G̃, G and D̃, D can be related as

vec(G̃) = Lp vec(G), vec(D̃) = Ep,p2 vec(D). (1.3)

The matrix Lp ∈ Cp×p is defined as

Lp =
1

2
(Jp2Ip2 + J∗p2Kp), (1.4)

where ∗ denotes the Hermitian conjugate and Jp2 = diag(vec(J̃)) with J̃ = (1{k≤l}+i1{k>l})k,l=1,...,p.
The matrixKp denotes the commutation matrix, which transforms vec(M) into vec(M ′) for a square
matrix M ; see Magnus and Neudecker (2007) for more details on these kinds of operations. The
matrix Ep,p2 is defined as

Ep,p2 = (e1,0p×p, e2,0p×p, . . . , ep), (1.5)

where ei denotes the ith standard basis vector of Rp and 0p×p a p× p-matrix with all entries equal
to zero. Its Moore-Penrose inverse is E+

p,p2
= E′p,p2(Ep,p2E

′
p,p2)−1 = E′p,p2 .

1.1 Proof of Theorem [2.1]

The asymptotic normality result can be derived as in Baek et al. (2019) and Robinson (2008) who
considered the case p = 2. We focus on calculating the information matrix for all model parameters
for arbitrary dimension p. The negative log-likelihood `(θ) = `(D,G) of the model is given in (1.1).
The information matrix is a 2× 2 block matrix

I(θ) =

(
MG MG,D

M∗G,D MD

)
(1.6)

with
MG,D = E(D

G̃
(D

D̃
`)), MG = MG,G, MD = MD,D,

where DV denotes the derivative matrix with respect to a vector V . As proven in Lemma 1.1
below, the resulting blocks of (1.6) can be expressed as

MG = (L−1
p )∗((G−1)′ ⊗G−1)L−1

p , (1.7)

MG,D = −T1(L−1
p )∗(G−1 ⊕ (G−1)′)E′p,p2 , (1.8)

MD = T2Ep,p2(G⊕G′)(G−1 ⊕ (G−1)′)E′p,p2 , (1.9)

where ⊕ denotes the Kronecker sum defined as A ⊕ B = (Ip ⊗ A) + (B ⊗ Ip), Lp, Ep,p2 are as in
(1.4) and (1.5), and

T1 =
1

m

m∑
j=1

log λj , T2 =
1

m

m∑
j=1

(log λj)
2. (1.10)

The block structure of the information matrix (1.6) leads to the inverse

I(θ)−1 =

Lp(G′ ⊗G)L∗p +
T 2
1

T2−T 2
1
T2OG,D

T1
T2−T 2

1
T2Lp(G⊕G′)E′p,p2M

−1
D

T1
T2−T 2

1
T2M

−1
D Ep,p2(G⊕G′)L∗p 1

T2−T 2
1
T2M

−1
D

 (1.11)

with
OG,D = Lp(G⊕G′)E′p,p2M

−1
D Ep,p2(G⊕G′)L∗p;
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see Lemma 1.2 below. By Lemma 1.3 below, the inverse of the information matrix (1.11) can be
simplified to

I(θ)−1 =

M−1
G +

T 2
1

T2−T 2
1
LpRZ

−1
G R∗L∗p

T1
T2−T 2

1
LpRZ

−1
G

T1
T2−T 2

1
Z−1
G R∗L∗p

1
T2−T 2

1
Z−1
G

 , (1.12)

where ZG = 2(G�G−1 + Ip), � denotes the Hadamard product and the matrix R is defined as

R = (vec(G)� vec(Y1), . . . , vec(G)� vec(Yp)) (1.13)

with Yi = (1{i=k}+1{i=l})k,l=1,...,p. The asymptotic orders of T1 and T2 in (1.10) are T1 ∼ log(m/N),
T2 ∼ (log(m/N))2 and T2 − T 2

1 = 1 + o(1) and lead to the limiting covariance matrix

C =

(
LpRZ

−1
G R∗L∗p LpRZ

−1
G

Z−1
G R∗L∗p Z−1

G

)
,

as stated in the article.

Lemma 1.1. The information matrix (1.6) is given by (1.7), (1.8) and (1.9).

Proof: We first give the resulting negative score function and second derivative matrices, and take
the expected values to conclude (1.6) for the information matrix. Set

A(k) =
1

m

m∑
j=1

λDj IX(λj)λ
D
j (log(λj))

k, k = 0, 1, 2. (1.14)

Taking the expected value of A(k) and assuming E IX(λj) = f(λj) = λ−Dj Gλ−Dj for simplicity yields

EA(0) = G, EA(1) = T1G, EA(2) = T2G (1.15)

with T1, T2 as in (1.10).
For the negative score function Dθ `(D,G) with respect to θ in (1.2), we calculate D

G̃
`(D,G)

and D
D̃
`(D,G) as

D
G̃
` = ((L−1

p )∗ vec(G−1))∗ − ((L−1
p )∗ vec(G−1A(0)G−1))∗, (1.16)

D
D̃
` = −2T11

′
p + (Ep,p2 vec(G−1A(1)))∗ + (Ep,p2 vec(A(1)G−1))∗, (1.17)

where 1p = (1, . . . , 1)′; details are given below. To get the information matrix, we need to calculate
the second derivative matrices, which leads to

D
G̃

(D
G̃
`) = −(L−1

p )∗((G−1)′ ⊗G−1)L−1
p

+ (L−1
p )∗

(
((G−1A(0)G−1)′ ⊗G−1) + ((G−1)′ ⊗G−1A(0)G−1)

)
L−1
p , (1.18)

D
D̃

(D
G̃
`) = −(L−1

p )∗(((A(1)G−1)′ ⊗G−1) + ((G−1)′ ⊗G−1A(1)))E′p,p2 . (1.19)

D
D̃

(D
D̃
`) = Ep,p2

(
((A(2))′ ⊗G−1) + (Ip ⊗ (A(2)G−1)′)

+ ((A(2)G−1)′ ⊗ Ip) + ((G−1)′ ⊗A(2)G−1)
)
E′p,p2 , (1.20)

with details given below. Taking the expected value of the second derivatives (1.18), (1.19) and
(1.20) and using (1.15) gives the information matrix (1.6) with blocks (1.7), (1.8) and (1.9).
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To derive the derivatives (1.16) and (1.17) note the following relations for some differentials for
non-singular matrices X,

d |X| = |X| tr(X−1 dX), (1.21)

dX−1 = −X−1(dX)X−1, (1.22)

dXj =

j∑
k=1

Xk−1(dX)Xj−k, j = 1, 2, . . . . (1.23)

For (1.21)–(1.22) and (1.23) see p. 202 and p. 208 in Magnus and Neudecker (2007), respectively.
The Taylor expansion of the exponential function and the formula for the differential of a power
function (1.23) combined together give

dλD =

∞∑
j=0

(log(λ))j

j!

j∑
k=1

Dk−1(dD)Dj−k =

∞∑
j=1

(log(λ))j

j!

j∑
k=1

Dj−1 dD

= log(λ)

∞∑
j=1

(log(λ))j−1

(j − 1)!
Dj−1 dD

= log(λ)λD dD,

(1.24)

where we used commutativity of diagonal matrices. For more insights about differentials and
derivatives of matrix-valued functions, we refer the reader to Chapter 9 in Magnus and Neudecker
(2007).

The derivative with respect to G̃ in (1.16) is a consequence of the differentials

d
1

m

m∑
j=1

log |λ−Dj Gλ−Dj | =
1

|G|
|G| tr(G−1 dG) = (vec(G−1))∗ vec(dG)

= (vec(G−1))∗L−1
p vec(d G̃)

= ((L−1
p )∗ vec(G−1))∗ vec(d G̃),

d
1

m

m∑
j=1

tr(IX(λj)λ
D
j G
−1λDj ) = d tr(A(0)G−1)

= tr(G−1A(0)(−1)G−1(dG))

= −(vec(G−1A(0)G−1))∗L−1
p vec(d G̃)

= −((L−1
p )∗ vec(G−1A(0)G−1))∗ vec(d G̃),

where (1.21), (1.22) and (1.3) are used.
The derivative with respect to D̃ in (1.17) is a consequence of the differentials

d
1

m

m∑
j=1

log |λ−Dj Gλ−Dj | =
1

m

m∑
j=1

2 tr(λDj dλ−Dj )

= −2
1

m

m∑
j=1

log(λj)(vec(Ip))
∗E′p,p2 vec(d D̃)

= −2
1

m

m∑
j=1

log(λj)1
′
p vec(d D̃) = −2T11

′
p vec(d D̃),
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d
1

m

m∑
j=1

tr(IX(λj)λ
D
j G
−1λDj ) =

1

m

m∑
j=1

(tr(IX(λj)(dλ
D
j )G−1λDj ) + tr(IX(λj)λ

D
j G
−1(dλDj )))

=
(

(Ep,p2 vec(G−1A(1)))∗ + (Ep,p2 vec(A(1)G−1))∗
)

vec(d D̃), (1.25)

where we used (1.21) and (1.24). The equation (1.25) is a consequence of

tr(IX(λ)(dλD)G−1λD) = log(λ) tr(G−1λDIX(λ)λD dD)

= log(λ)(vec(G−1λDIX(λ)λD))∗E′p,p2 vec(d D̃)

= log(λ)(Ep,p2 vec(G−1λDIX(λ)λD))∗ vec(d D̃).

These calculations also used (1.24) and Theorem 2 in Magnus and Neudecker (2007), p. 35.
We continue with the second derivative matrix of `(D,G). The relation (1.18) for D

G̃
(D

G̃
`) is

a consequence of (1.17) and the derivatives

d(L−1
p )∗ vec(G−1) = (L−1

p )∗ vec(dG−1)

= −(L−1
p )∗ vec(G−1(dG)G−1)

= −(L−1
p )∗((G−1)′ ⊗G−1)L−1

p vec(d G̃),

−d(L−1
p )∗ vec(G−1A(0)G−1) = −(L−1

p )∗ vec((dG−1)A(0)G−1 +G−1A(0)(dG−1))

= −(L−1
p )∗ vec(−G−1(dG)G−1A(0)G−1 +G−1A(0)(−1)G−1(dG)G−1)

= (L−1
p )∗((G−1A(0)G−1)′ ⊗G−1) vec(dG)

+ ((G−1)′ ⊗G−1A(0)G−1) vec(dG)

= (L−1
p )∗

(
((G−1A(0)G−1)′ ⊗G−1)

+ ((G−1)′ ⊗G−1A(0)G−1)
)
L−1
p vec(d G̃).

The second derivative D
D̃

(D
G̃
`) in (1.19) follows from the differentials (with respect to D̂)

d(L−1
p )∗ vec(G−1) = 0,

−d(L−1
p )∗ vec(G−1A(0)G−1) = − 1

m

m∑
j=1

(L−1
p )∗ d vec(G−1λDj IX(λj)λ

D
j G
−1)

= − 1

m

m∑
j=1

((L−1
p )∗ vec(G−1(dλDj )IX(λj)λ

D
j G
−1

+G−1λDj IX(λj)(λj)(dλ
D
j )G−1)

= − 1

m

m∑
j=1

log(λj)(L
−1
p )∗((λDj IX(λj)λ

D
j G
−1)′ ⊗G−1)

+ ((G−1)′ ⊗G−1λDj IX(λj)λ
D
j ))E′p,p2 vec(d D̃),

where

vec(G−1(dλD)IX(λ)λDG−1) = log(λ) vec(G−1λD(dD)IX(λ)λDG−1)

= log(λ)((IX(λ)λDG−1)′ ⊗G−1λD) vec(dD)
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= log(λ)((λDIX(λ)λDG−1)′ ⊗G−1)E′p,p2 vec(d D̃).

The relation (1.20) for D
D̃

(D
D̃
`) follows from

dEp,p2 vec(G−1A(1)) =
1

m

m∑
j=1

log(λj)Ep,p2 d vec(G−1λDj IX(λj)λ
D
j )

=
1

m

m∑
j=1

log(λj)Ep,p2 vec(G−1(dλDj )IX(λj)λ
D
j +G−1λDj IX(λj)(dλ

D
j ))

= Ep,p2
(

((A(2))′ ⊗G−1) + (Ip ⊗ (A(2)G−1)′)
)
E′p,p2 vec(d D̃),

dEp,p2 vec(A(1)G−1) = Ep,p2
(

((A(2)G−1)′ ⊗ Ip) + ((G−1)′ ⊗A(2)G−1)
)
E′p,p2 vec(d D̃),

since for example

vec((dλD)IX(λ)λDG−1) = ((λDIX(λ)λDG−1)′ ⊗ Ip) vec(dD)

= log(λ)((λDIX(λ)λDG−1)′ ⊗ Ip)E′p,p2 vec(d D̃).

Lemma 1.2. The inverse of the information matrix (1.6) can be written as in (1.11).

Proof: By using Magnus and Neudecker (2007), p. 12, the block structure of the information matrix
leads to the inverse

I(θ)−1 =

(
M−1
G +M−1

G MG,DS
−1
G,DM

∗
G,DM

−1
G −M−1

G MG,DS
−1
G,D

−S−1
G,DM

∗
G,DM

−1
G S−1

G,D

)
, (1.26)

where the so-called Schur complement is defined as SG,D = MD −M∗G,DM
−1
G MG,D with

M−1
G = Lp(G

′ ⊗G)L∗p

and MG, MG,D and MD are given in (1.7), (1.8) and (1.9), respectively. We can write

−M∗G,DM−1
G = T1((L−1

p )∗((Ip ⊗G−1) + ((G−1)′ ⊗ Ip))E′p,p2)∗Lp(G
′ ⊗G)L∗p

= T1Ep,p2((Ip ⊗G−1) + ((G−1)′ ⊗ Ip))(G′ ⊗G)L∗p

= T1Ep,p2((G′ ⊗ Ip) + (Ip ⊗G))L∗p

= T1Ep,p2(G⊕G′)L∗p.

(1.27)

In the view of (1.27), (1.8) and (1.9), the Schur complement can be simplified to

SG,D = MD −M∗G,DM−1
G MG,D

= MD − T 2
1Ep,p2(G⊕G′)L∗p(L−1

p )∗((Ip ⊗G−1) + ((G−1)′ ⊗ Ip))E′p,p2
= MD − T 2

1Ep,p2(G⊕G′)((Ip ⊗G−1) + ((G−1)′ ⊗ Ip))E′p,p2
= (T2 − T 2

1 )Ep,p2(G⊕G′)(G−1 ⊕ (G−1)′)E′p,p2

= (T2 − T 2
1 )(1/T2)MD.
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We write its inverse as

(SG,D)−1 =
1

T2 − T 2
1

T2M
−1
D . (1.28)

Whether M−1
D can be expressed in closed form remains an open question. Combining (1.27) and

(1.28) yields

−M−1
G MG,DS

−1
G,D =

T1

T2 − T 2
1

Lp(G⊕G′)Ep,p2T2M
−1
D (1.29)

and
M−1
G +M−1

G MG,DS
−1
G,DM

∗
G,DM

−1
G

= Lp(G
′ ⊗G)L∗p +

T 2
1

T2 − T 2
1

T2Lp(G⊕G′)E′p,p2M
−1
D Ep,p2(G⊕G′)L∗p.

(1.30)

The relations (1.28), (1.29) and (1.30) give (1.11).

Lemma 1.3. The inverse of the information matrix (1.11) can be simplified to (1.12).

Proof: To obtain the representation (1.12), we refrain from taking the derivatives with respect
to D̃ = (d1, . . . , dp)

′ and instead take the derivatives componentwise with respect to dk for k ∈
{1, . . . , p}. This leads to

MD = E

(
∂2`

∂dk∂dl

)
k,l=1,...,p

= T22(G�G−1 + Ip), (1.31)

MG,D = E

(
∂

∂dk
D
G̃
`

)
k=1,...,p

= −T1(L−1
p )∗((G−1)′ ⊗G−1)R (1.32)

with R as in (1.13).
To verify (1.31) and (1.32), note that the negative log-likelihood in (1.1) can be written as

`(θ) = log |G| − 2

(
p∑
i=1

di

)
1

m

m∑
j=1

log λj +
1

|G|
SX(θ),

with SX(θ) =
∑p

ij=1A
(0)
ij ĝij , where A

(r)
kl denotes the klth component of (1.14) and the inverse of

G−1 = (ĝij)i,j=1,...,p can be written as

ĝij =
1

|G|
∑

σ∈Sp∧σi=j
sign(σ)

∏
r∈Si

grσr ,

where Sk denotes the symmetric group and Sp := {1, . . . ,m} \ {p}. The formula is a consequence
of using Cramer’s rule for the inverse of G.

The negative score function is written as

∂`

∂dl
= −2T1 +

∂

∂dl

1

|G|

p∑
i,j=1

A
(0)
ij

∑
σ∈Sl∧σi=j

sign(σ)
∏
r∈Si

grσr

= −2T1 +
1

|G|

p∑
i,j=1

A
(1)
ij (1{l=i} + 1{l=j})

∑
σ∈Sl∧σi=j

sign(σ)
∏
r∈Si

grσr .
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Taking the second derivative with respect to dk, we obtain

∂2`

∂dk∂dl
=

∂

∂dk

−2T1 +
1

|G|

p∑
i,j=1

A
(1)
ij (1{l=i} + 1{l=j})

∑
σ∈Sp∧σi=j

sign(σ)
∏
r∈Si

grσr


=

1

|G|

p∑
i,j=1

A
(2)
ij (1{l=i} + 1{l=j})(1{k=i} + 1{k=j})

∑
σ∈Sp∧σi=j

sign(σ)
∏
r∈Si

grσr .

Taking the expected value and using (1.15) gives

E

(
∂2`

∂dk∂dl

)
k,l=1,...,p

=

p∑
i,j=1

T2gij(1{l=i} + 1{l=j})(1{k=i} + 1{k=j})
1

|G|
∑

σ∈Sp∧σi=j
sign(σ)

∏
r∈Si

grσr

= T2

p∑
i,j=1

gij ĝij(1{l=i} + 1{l=j})(1{k=i} + 1{k=j})

= T2

{
2glkĝlk, if l 6= k,

2gllĝll + 2<(
∑p

j=1 glj ĝlj), if l = k.

= T22(G�G−1 + Ip).

We get a representation for the matrix MG,D by taking the derivative of (1.16) with respect to
dk for k = 1, . . . , p as

∂

∂dk
D
G̃
` = −(L−1

p )∗
∂

∂dk
vec(G−1A(0)G−1)

= −(L−1
p )∗((G−1)′ ⊗G−1)

∂

∂dk
vec(A(0))

= −(L−1
p )∗((G−1)′ ⊗G−1) vec(Xk)

(1.33)

with Xk = (A
(1)
rs (1{k=r} + 1{k=s}))r,s=1,...,p, since

∂

∂dk
vec(A(0)) =

∂

∂dk
vec(

1

m

m∑
j=1

λdr+ds
j IX,rs(λj))r,s=1,...,p

= vec(
1

m

m∑
j=1

log(λj)(1{k=r} + 1{k=s})λ
dr+ds
j IX,rs(λj))r,s=1,...,p

= vec((A(1)
rs (1{k=r} + 1{k=s}))r,s=1,...,p).

Taking the expected value of (1.33) leads to

E

(
∂

∂dk
D
G̃
`

)
= −T1(L−1

p )∗((G−1)′ ⊗G−1) vec((grs(1{k=r} + 1{k=s}))r,s=1,...,p)

= −T1(L−1
p )∗((G−1)′ ⊗G−1) vec(G)� vec(Yk)

= −T1(L−1
p )∗((G−1)′ ⊗G−1)R

with Yk = (1{k=r} + 1{k=s})r,s=1,...,p and R as in (1.13).
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Using formula (1.26) for the inverse of the information matrix, (1.31) and (1.32) gives

S−1
G,D =

T1

T2 − T 2
1

M−1
D =

1

T2 − T 2
1

Z−1
G ,

−M−1
G MG,DS

−1
G,D = Lp(G

′ ⊗G)L∗pT1(L−1
p )∗((G−1)′ ⊗G−1)RM−1

D =
T1

T2 − T 2
1

LpRZ
−1
G ,

M−1
G MG,DS

−1
G,DM

∗
G,DM

−1
G =

T 2
1

T2 − T 2
1

LpRZ
−1
G R∗L∗p

with M−1
G = Lp(G

′ ⊗G)L∗p, which leads to the desired representation of (1.12) of I(θ)−1.

1.2 Proof of Remark [2.1]

Remark [2.1] states that Theorem [2.1] can also be written in terms of the precision matrix P = G−1.
The parameter vector of interest is given now by

θP =

(
vec(P̃ )

D̃

)
, (1.34)

where P̃ is defined from P in the same way that G̃ and G relate; see (1.3). We prove that the
information matrix

I(θ) =

(
MP MP,D

M∗P,D MD

)
(1.35)

with
MP,D = E(D

P̃
(D

P̃
`)), MP = MP,P , MD = MD,D,

coincides with (1.6) written in terms of (1.7), (1.8) and (1.9) by replacing G with P and changing
the sign of the off-diagonal block matrices.

The resulting blocks of (1.35) can be expressed as

MP = (L−1
p )∗(G′ ⊗G)L−1

p , (1.36)

MP,D = T1(L−1
p )∗(G⊕G′)E′p,p2 , (1.37)

For the negative score function DθP `(D,G), we calculate D
P̃
`(D,G) as

D
P̃
` = ((L−1

p )∗ vec(G))∗ − ((L−1
p )∗ vec(A(0)))∗.

To get the information matrix, we need to calculate the second derivative matrices, which leads to

D
P̃

(D
P̃
`) = (L−1

p )∗(G′ ⊗G)L−1
p , (1.38)

D
D̃

(D
P̃
`) = (L−1

p )∗((A(1) ⊗ Ip) + (Ip ⊗A(1)))E′p,p2 . (1.39)

Taking the expected values of the second derivatives (1.38) and (1.39) gives the information matrix
(1.35) with blocks (1.36), (1.37). The detailed arguments are omitted since they are similar to
those in the proof of Theorem [2.1].
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1.3 Proof of Remark [2.2]

We first prove the upper bound[
2(G�G−1 + Ip)

]−1

kk
≤ 1

4
, k = 1, . . . , p. (1.40)

For Hermitian matrices A and B, we write A � B if A − B is positive semidefinite and A � B if
A−B is positive definite. We use λj(A) for the jth eigenvalue of A.

Note that 2(G �G−1 + Ip) � 0 since G � 0; see Theorem 7.5.3. in Horn and Johnson (2013).
For this reason,[

2(G�G−1 + Ip)
]−1 � 1

4
Ip ⇔ 2(G�G−1 + Ip) � 4 ∗ Ip ⇔ 2(G�G−1 − Ip) � 0, (1.41)

where Corollary 7.7.4. (a) in Horn and Johnson (2013) was used for the first equivalence. The last
relation in (1.41) is proven in Theorem 7.7.17. (c) in Horn and Johnson (2013). Corollary 7.7.4.
(c) in Horn and Johnson (2013) implies

λj(
[
2(G�G−1 + Ip)

]−1
) ≤ 1

4
λj(Ip) =

1

4

and so [
2(G�G−1 + Ip)

]−1

kk
≤ max

1≤j≤p
λj(
[
2(G�G−1 + Ip)

]−1
) ≤ 1

4
.

We conjecture that the diagonal entries in (1.40) also have a lower bound as

1

4p
≤
[
2(G�G−1 + Ip)

]−1

kk
, k = 1, . . . , p.

This is suggested by at least the following two observations. First, recall that
[
2(G�G−1 + Ip)

]−1

kk

is the (normalized) asymptotic variance of the estimator d̂k. We expect this variance to be smallest
when the dependence between the kth component series and the rest (p − 1) series is strongest,
so that estimation of dk benefits most from these other series. This extreme dependence can
be thought as having p copies of the kth series or the kth series of length N · p. The usual
local Whittle estimator of dk for the series of such length would have its asymptotic variance as
(1/4)(1/(mp)) = (1/(4p))(1/m), where m is the index of the Fourier frequency when the sample
size is N . Thus, up to the normalization by 1/m, the asymptotic variance in this extreme case

is suggested as 1/(4p). Second, in smaller dimensions p, we have calculated
[
2(G�G−1 + Ip)

]−1

kk

assuming gkl = (gkkgll)
1/2δ with δ close to 1, reflecting extreme dependence among the component

series. As δ ↑ 0, we confirmed that
[
2(G�G−1 + Ip)

]−1

kk
indeed converges to 1/(4p).

1.4 Details for Remark [2.3]

As discussed in Remark [2.3] the matrix G in f(λ) ∼ λ−DGλ−D, as λ → 0+, can also be
parametrized in terms of polar coordinates. To distinguish between the two parametrization, we
use Z instead of G. Then, the parametrization reads

Z = (ωkle
sign(k−l)iφkl)k,l=1,...,p

with the so-called phase parameters φkl ∈ (−π/2, π/2) and ωkl ∈ R.
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As in the proof of Theorem [2.1], we introduce a suitable representation of the parameter vector.
Set Φ = (sign(k − l)iφkl)k,l=1,...,p, Ω = (ωkl)k,l=1,...,p and

Ω̃ := vech(Ω) = D+
p vec(Ω), Φ̃ := Wp,p2 vec(Φ),

where
Wp,p2 = (−i)(0p, V1,0p×2, . . . ,0p×(p−1), Vp−1,0p×p)

with Vq = (v(q−1)p+q, . . . , v(q−1)p+p−q), where vi denotes the ith standard basis vector of Rp and

0p×q is a p× q-matrix with all entries equal to zero. W+
p,p2

= (W ∗p,p2Wp,p2)−1W ∗p,p2 = −W ∗p,p2 is the

pseudoinverse of Wp,p2 . The parameter vector can then be written as θ = ((Ω̃)′, (Φ̃)′, (D̃)′).
The information matrix is now given by a 3× 3 block matrix

I(θ) =

 MΩ MΩ,φ MΩ,D

M∗Ω,φ Mφ Mφ,D

M∗Ω,D M∗φ,D MD

 , (1.42)

where
MΩ,φ = E(D

Φ̃
(D

Ω̃
)), MΩ,D = E(D

D̃
(D

Ω̃
)), Mφ,D = E(D

D̃
(D

Φ̃
)),

and MΩ = MΩ,Ω,Mφ = Mφ,φ,MD = MD,D. As proved in Lemma 1.4 below,

MΩ = D∗p(diag(vec(Γ)))∗((Z−1)′ ⊗ Z−1) diag(vec(Γ))Dp, (1.43)

MΩ,φ = D∗p(diag(vec(Γ)))∗((Z−1)′ ⊗ Z−1) diag(vec(Z))Wp,p2 , (1.44)

MΩ,D = −T1D
∗
p(diag(vec(Γ)))∗(Z−1 ⊕ (Z−1)′)E′p,p2 , (1.45)

Mφ = W+
p,p2

diag(vec(Z))((Z−1)′ ⊗ Z−1) diag(vec(Z))Wp,p2 , (1.46)

Mφ,D = T1W
+
p,p2

(diag(vec(Z)))∗(Z−1 ⊕ (Z−1)′)E′p,p2 , (1.47)

MD = T2Ep,p2(Z ⊕ Z ′)(Z−1 ⊕ (Z−1)′)E′p,p2 , (1.48)

where
Γ = (esign(k−l)iφkl)k,l=1,...,p. (1.49)

As noted in Remark [2.3], it is quite challenging to derive an explicit formula for the inverse of
the information matrix. The formula to derive the inverse of a 2 × 2 block matrix can be used to
get a formula for the inverse of a 3 × 3 block matrix. Therefore, rewrite I(θ) in terms of a 2 × 2
block matrix

I(θ) =

(
NΩ,φ OΩ,D

O∗Ω,D MD

)
with OΩ,φ,D = (MΩ,D Mφ,D)′ and

NΩ,φ =

(
MΩ MΩ,φ

M∗Ω,φ Mφ

)
.

Note that
M−1

Ω = D+
p (diag(vec(Γ)))−1(Z ′ ⊗ Z)(diag(vec(Γ))∗)−1(D+

p )∗.

Then, the Schur complement can be computed as

S̃ = Mφ −M∗Ω,φM−1
Ω MΩ,φ = 0.
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Since S̃ is not invertible, we use

N−1
Ω,φ =

(
S−1

1 −S−1
1 MΩ,φM

−1
φ

−M−1
φ M∗Ω,φS

−1
1 M−1

φ +M−1
φ M∗Ω,φS

−1
1 MΩ,φM

−1
φ

)

with S1 = MΩ −MΩ,φM
−1
φ M∗Ω,φ. Then, the inverse can be computed as

I−1(θ) =

(
N−1

Ω,φ +N−1
Ω,φOΩ,DS

−1
2 O∗Ω,DN

−1
Ω,φ −N−1

Ω,φOΩ,DS
−1
2

−S−1
2 O∗Ω,DN

−1
Ω,φ S−1

2

)

with
S2 = MD −O∗Ω,DN−1

Ω,φOΩ,D.

However, it is an open question if one can find further simplifications to achieve a more explicit
representation of I−1(θ) in terms of the parametrization Z = (ωkle

sign(k−l)iφkl)k,l=1,...,p.

Lemma 1.4. The information matrix (1.42) is given by (1.43)–(1.48).

Proof: In order to obtain the negative score function Dθ `(θ), we calculate the first derivatives in
the proof below as

D
Ω̃

= (D∗p(diag(vec(Γ)))∗ vec(Z−1))∗ − (D∗p(diag(vec(Γ)))∗ vec(Z−1A(0)Z−1))∗, (1.50)

D
Φ̃

= (W+
p,p2

(diag(vec(Z)))∗ vec(Z−1))∗ + (W+
p,p2

(diag(vec(Z)))∗ vec(Z−1A(0)Z−1))∗. (1.51)

Note that the first derivative with respect to D̃ can be obtained by replacing G with Z in (1.17).
As shown in the proof below, the second derivative matrices can be written as

D
Ω̃

(D
Ω̃

) = D∗p(diag(vec(Γ)))∗
(
− ((Z−1)′ ⊗ Z−1)

+ ((Z−1A(0)Z−1)′ ⊗ Z−1) + ((Z−1)′ ⊗ Z−1A(0)Z−1)
)

diag(vec(Γ))Dp, (1.52)

D
Φ̃

(D
Ω̃

) = D∗p(diag(vec(Γ)))∗
(
− ((Z−1)′ ⊗ Z−1)

− ((Z−1A(0)Z−1)′ ⊗ Z−1)− ((Z−1)′ ⊗ Z−1A(0)Z−1)
)

diag(vec(Z))Wp,p2 , (1.53)

D
D̃

(D
Ω̃

) = −D∗p(diag(vec(Γ)))∗((A(1)Z−1)′ ⊗ Z−1) + ((Z−1)′ ⊗ Z−1A(1)))E′p,p2 , (1.54)

D
Φ̃

(D
Φ̃

) = W+
p,p2

diag(vec(Z))
(

diag(vec(Z−1))Wp,p2 − ((Z−1)′ ⊗ Z−1) diag(vec(Z))Wp,p2

)
−W+

p,p2
diag(vec(Z−1A(0)Z−1)) diag(vec(Z))Wp,p2

+W+
p,p2

diag(vec(Z))
(

((Z−1A(0)Z−1)′ ⊗ Z−1)

+ ((Z−1)′ ⊗ Z−1A(0)Z−1)
)

diag(vec(Z))Wp,p2 , (1.55)

D
D̃

(D
Φ̃

) = W+
p,p2

(diag(vec(Z)))∗(((A(1)Z−1)′ ⊗ Z−1) + ((Z−1)′ ⊗ Z−1A(1)))E′p,p2 . (1.56)

Taking the expected value of the second derivatives (1.52)–(1.56) and using (1.15) gives the infor-
mation matrix (1.42) with the blocks (1.43)–(1.48).

For further calculations, note that

vec(dZ) = vec(Γ� dΩ) = vec(Γ)� vec(dΩ) = diag(vec(Γ))Dp vec(d Ω̃),
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vec(dZ) = vec(Z � dΦ) = vec(Z)� vec(dΦ) = diag(vec(Z))Wp,p2 vec(d Φ̃),

where we used (1.49) and the notation Φ = (sign(k − l)iφkl)k,l=1,...,p. We next prove (1.50), (1.51)
and (1.52)–(1.56).

The differential (1.50) can be derived as

d
1

m

m∑
j=1

log |λ−Dj Zλ−Dj | = (vec(Z−1))∗ vec(dZ)

= (vec(Z−1))∗ diag(vec(Γ))Dp vec(d Ω̃)

= (D∗p(diag(vec(Γ)))∗ vec(Z−1))∗ vec(d Ω̃),

d
1

m

m∑
j=1

tr(IX(λj)λ
D
j Z
−1λDj ) = −(vec(Z−1A(0)Z−1))∗ vec(dZ)

= −(D∗p(diag(vec(Γ)))∗ vec(Z−1A(0)Z−1))∗ vec(d Ω̃)

and (1.51) as

1

m

m∑
j=1

log |λ−Dj Zλ−Dj | = tr(Z−1 dZ)

= (vec(Z−1))∗ vec(dZ)

= (vec(Z−1))∗ diag(vec(Z))Wp,p2 vec(d Φ̃)

= (W+
p,p2

(diag(vec(Z)))∗ vec(Z−1))∗ vec(d Φ̃),

d
1

m

m∑
j=1

tr(IX(λj)λ
D
j Z
−1λDj ) = d tr(A(0)Z−1)

= − tr(Z−1A(0)Z−1(dZ))

= (W+
p,p2

(diag(vec(Z)))∗ vec(Z−1A(0)Z−1))∗ vec(d Φ̃).

The second derivative matrix D
Ω̃

(D
Ω̃

) in (1.52) follows from

dD∗p(diag(vec(Γ)))∗ vec(Z−1)

= −D∗p(diag(vec(Γ)))∗ vec(Z−1(dZ)Z−1)

= −D∗p(diag(vec(Γ)))∗((Z−1)′ ⊗ Z−1) diag(vec(Γ))Dp vec(d Ω̃),

−dD∗p(diag(vec(Γ)))∗ vec(Z−1A(0)Z−1)

= −D∗p(diag(vec(Γ)))∗
(

((Z−1A(0)Z−1)′ ⊗ Z−1)

+ ((Z−1)′ ⊗ Z−1A(0)Z−1)
)

diag(vec(Γ))Dp vec(d Ω̃).

The second derivative matrix D
Φ̃

(D
Ω̃

) in (1.53) is a consequence of

dD∗p(diag(vec(Γ)))∗ vec(Z−1)

= −D∗p(diag(vec(Γ)))∗((Z−1)′ ⊗ Z−1), vec(dZ)

= −D∗p(diag(vec(Γ)))∗((Z−1)′ ⊗ Z−1) diag(vec(Z))Wp,p2 vec(d Φ̃)
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−dD∗p(diag(vec(Γ)))∗ vec(Z−1A(0)Z−1)

= D∗p(diag(vec(Γ)))∗
(

((Z−1A(0)Z−1)′ ⊗ Z−1)

+ ((Z−1)′ ⊗ Z−1A(0)Z−1)
)

diag(vec(Z))Wp,p2 vec(d Φ̃).

The relation (1.54) for D
D̃

(D
Ω̃

) can be proven as (1.19), since we are taking the derivative with

respect to D̃, the calculations are independent of the underlying parametrization.
The second derivative D

Φ̃
(D

Φ̃
) in (1.55) with respect to the phase parameter vector follows

from

dW+
p,p2

(diag(vec(Z)))∗ vec(Z−1)

= W+
p,p2

(
(d vec(Z))� vec(Z−1) + vec(Z)� d vec(Z−1)

)
= W+

p,p2

(
vec(Z−1)� diag(vec(Z))Wp,p2 vec(d Φ̃)− vec(Z)� vec(Z−1(dZ)Z−1)

)
= W+

p,p2

(
diag(vec(Z−1)) diag(vec(Z))Wp,p2

− diag(vec(Z))((Z−1)′ ⊗ Z−1) diag(vec(Z))Wp,p2

)
vec(d Φ̃),

dW+
p,p2

(diag(vec(Z)))∗ vec(Z−1A(0)Z−1)

= −W+
p,p2

diag(vec(Z−1A(0)Z−1)) diag(vec(Z))Wp,p2 vec(d Φ̃)

+W+
p,p2

diag(vec(Z))
(

((Z−1A(0)Z−1)′ ⊗ Z−1)

+ ((Z−1)′ ⊗ Z−1A(0)Z−1)
)

diag(vec(Z))Wp,p2 vec(d Φ̃)

The proof for the last second derivative D
D̃

(D
Φ̃

) in (1.56) is omitted but follows the calculations
to derive (1.19).

2 Details for Section [III]

We recall here the setting of Section [III] and give the proof of Corollary [3.1], which is a consequence
of Theorem [2.1].

We consider the hypothesis testing problem

H0 : r1,kl = r2,kl = 0 for all k 6= l. (2.1)

The parameters entering the null hypothesis can be obtained from G̃ by eliminating the diagonal
elements of G. Therefore, we introduce the matrix

Ep(p−1),p2 = (0p(p−1), V1,0p(p−1), . . . ,0p(p−1), Vp−1,0p(p−1)) (2.2)

with Vq = (v1+(q−1)p, . . . , vp+(q−1)p), where vi denotes the ith standard basis vector of Rp(p−1) and
0p(p−1) is a p(p− 1)-vector with all entries equal to zero. Then, the vector of parameters of interest
can be written as

ϑ = Ep(p−1),p2 vec(G̃),

and similarly ϑ̂ for the local Whittle estimators.
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2.1 Proof of Corollary [3.1]

The asymptotic normality result can be obtained under the null hypothesis (2.1) by replacing the
matrix G with G = diag(g11, . . . , gpp) in the upper left block of (1.12). This block is given by

M−1
G +

T 2
1

T2 − T 2
1

LpRZ
−1
G R∗L∗p (2.3)

with M−1
G = Lp(G

′ ⊗G)L∗p and ZG = 2(G�G−1 + Ip).
Considering the two summands in (2.3) separately with G replaced by G leads to

LpRZ
−1
G R∗L∗p =

1

4
LpRR

∗L∗p = (Qkl)k,l=1,...,p (2.4)

with

Qkl =

{
g2
rr, if k, l = 1 + (p+ 1)(r − 1), for r = 1, . . . p,

0, otherwise,

since Z−1
G = (2(G � G−1 + Ip))

−1 = (1/4)Ip and

M−1
G = Lp(G′ ⊗ G)L∗p

=
1

4
(Jp2Ip2 + J∗p2Kp)(G ⊗ G)(Jp2Ip2 + J∗p2Kp)

∗

=
1

4

(
Jp2(G ⊗ G)J∗p2 + Jp2(G ⊗ G)K∗pJp2 + J∗p2Kp(G ⊗ G)J∗p2 + J∗p2Kp(G ⊗ G)K∗pJp2

)
=

1

4

(
2<(Jp2(G ⊗ G)J∗p2) + 2<(Jp2(G ⊗ G)KpJ

∗
p2)
)

=
1

2
(G ⊗ G),

(2.5)

where we used Theorem 9 in Magnus and Neudecker (2007), p. 55 for the equality before last and
the last equality follows since the real part of the second summand zero.

Then, combining (2.4) and (2.5), Theorem [2.1] implies

√
mϑ̂

d→ N (0, C0)

with

C0 =
1

2
Ep(p−1),p2(G ⊗ G)E ′p(p−1),p2 .

3 Additional comments for Section [V]

Our numerical study assesses the performance of the fractal non-connectivity test of Section [3].
We provide here additional details regarding the discussion in the article.

First, we recall the underlying time series model for the simulation study. For the empirical
size calculations, we simulate a fractally non-connected series with the spectral density fX(λ) =
(fX,kl(λ))k,l=1,...,p given by

fX,kk(λ) =
σkk
2π
|1− e−iλ|−2dk , fX,kl(λ) =

σkl
2π

(1− e−iλ)−δk(1− eiλ)−δl , (3.1)

for k < l, where 0 < δk < dk < 1/2, k = 1, . . . , p, and σkl 6= 0, σkk > 0. For the empirical power
calculations, we use a fractally connected model and take the same spectral density as in (3.1) but
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X1,n X2,n X3,n X4,n X5,n

X1,n 0.73 0.227 0.082 0.048
X2,n 0.082 0.09 0.065
X3,n 0.065 0.08
X4,n 0.066
X5,n

Table 1: Empirical sizes for the pairwise fractal non-connectivity test applied to each pair of the
five dimensional time series with n = 1, . . . , 1000.

with δk = dk. The autocovariance functions for these series can be computed explicitly and the
Gaussian series can be generated exactly following Helgason et al. (2011). For the simulation study,
we take p = 5,

d = (d1, . . . , d5) = (0.1, 0.2, 0.25, 0.3, 0.4), δk = (δ1, . . . , δ5) = 0.1 · d,

Σ = (σkl)k,l=1...,p =


1 0.1 0.5 0.2 0.1

1 0.2 0.4 0.1
1 0.1 0.2

1 0.05
1

 (3.2)

and the sample size N = 1000. The entries below the main diagonal of the symmetric Σ are
omitted.

Table [1] in the article presents the empirical sizes and powers of the fractal non-connectivity
test as functions of the tuning parameters m in the local Whittle estimation. As can be seen from
the table, the test is oversized even for smaller numbers of frequencies m.

To shed light on this observation, we fix the number of frequencies to m = N0.45 and consider
pairwise testing. In other words, we apply the fractal connectivity test to each possible pair
(Xk,n, Xl,n), k, l = 1, . . . , 5, n = 1, . . . , 1000, of the five dimensional time series. The empirical sizes
are reported in Table 1. Comparing these sizes to the respective off-diagonal elements of Σ in (3.2),
one may observe that the individual pairwise tests perform well for smaller off diagonal elements
in Σ. In contrast, for the pair associated with σ13 = 0.5, the test performs poorly.

Our global fractal connectivity test also gets affected by the (relative) magnitudes of the entries
of Σ. To argue this point, we again consider the pairs (Xk,n, Xl,n), k, l = 1, . . . , 5, n = 1, . . . , 1000,
and calculate the empirical probabilities for rejecting a pairwise hypothesis falsely given that an-
other pairwise hypothesis has already been rejected falsely; see Figure 1.

Focussing on the second row in Figure 1, one may observe higher values compared to the rest of
the empirical probabilities. The second row presents the empirical probabilities that pairwise test
rejects falsely given that the hypothesis of the pair (X1,n, X3,n) being fractally non-connected has
already been rejected. The pair (X1,n, X3,n) is associated with σ13 = 0.5 in (3.2).

Regarding our global fractal non-connectivity test, the discussion above shows that the depen-
dence structure imposed by Σ might increase the size of the test: single larger entries of Σ will
tend to lead to a rejection in the pairwide testing and as a result, also to a rejection of the global
hypothesis (2.1).
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1

0.23881

0.074627

0.074627

0.10448

0.089552

0.074627

0.044776

0.074627

0.044776

0.074766

1

0.079439

0.060748

0.070093

0.13551

0.065421

0.046729

0.028037

0.060748

0.09434

0.32075

1

0.037736

0.09434

0.20755

0.037736

0.037736

0.018868

0.037736

0.086207

0.22414

0.034483

1

0.12069

0.068966

0.034483

0.068966

0.017241

0.017241

0.10938

0.23438

0.078125

0.10937

1

0.078125

0.046875

0.078125

0.046875

0.03125

0.054545

0.26364

0.1

0.036364

0.045455

1

0.072727

0.072727

0.027273
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Figure 1: The empirical probabilities for rejecting a pairwise hypothesis (horizontal) falsely given
another pairwise hypothesis (vertical) has already been rejected falsely. The labeling kl on the
horizontal and vertical axes denote the respective pairs (Xk,n, Xl,n), k, l = 1, . . . , 5.

References

C. Baek, S. Kechagias, and V. Pipiras. Asymptotics of bivariate local Whittle estimators with
applications to fractal connectivity. Preprint, 2019. To appear in Journal of Statistical Planning
and Inference. Available at http://pipiras.web.unc.edu.

H. Helgason, V. Pipiras, and P. Abry. Fast and exact synthesis of stationary multivariate gaussian
time series using circulant embedding. Signal Processing, 91(5):1123–1133, 2011.

R. A. Horn and C. R. Johnson, editors. Matrix Analysis. Cambridge University Press, New York,
NY, USA, 2013.

J. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and
Econometrics. Probabilistics and Statistics. Wiley, 2007.

P. M. Robinson. Multiple local Whittle estimation in stationary systems. The Annals of Statistics,
36(5):2508–2530, 10 2008.

17



Marie-Christine Düker Vladas Pipiras
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