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Abstract

In a varying means model, the temporary evolution of a p-vector system is determined by p
deterministic nonparametric functions superimposed by error terms, possibly dependent cross
sectionally. The basic interest is in linear combinations across the p dimensions that make the
deterministic functions constant over time. The number of such linearly independent linear
combinations is referred to as a cotrending dimension, and their spanned space as a cotrend-
ing space. This work puts forward a framework to test statistically for cotrending dimension
and space. Connections to principal component analysis and cointegration are also considered.
Finally, a simulation study to assess the finite-sample performance of the proposed tests, and
applications to several real data sets are also provided.

1 Introduction

The topic and the results of this work can be viewed from several interesting angles. We shall first
describe the problem in more technical terms and then discuss its connections to other lines of
investigation. We are interested here in a statistical model of the form

Xt “ µ
´ t

T

¯

` Yt, t “ 1, . . . , T. (1.1)

Here, t is thought as time, the observations Xt are p-vectors, µ : r0, 1s Ñ Rp is a p-vector determinis-
tic function with component functions pµ1puq, . . . , µppuqq

1 and Yt are p-vector i.i.d. error terms with
EYt “ 0. We shall further assume that the covariance matrix of the error terms EYtY

1
t may vary

with time, and also treat the simpler special case when it does not, that is, EYtY
1
t “ Σ, separately

– the reader may have this case in mind for the rest of this section. We think of (1.1) as modeling
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varying means across p dimensions and shall refer to (1.1) as a varying means or VM model. The
mean vector function µpuq is nonparametric and will be assumed to be piecewise continuous. The
focus here is on the “fixed p, large T” asymptotics.

The question we ask here for the VM model is whether there are (linearly independent) linear
combinations of the components of Xt that are stationary across time t at the mean level. That is,
we look for a pˆ d1 matrix B1 with linearly independent columns (which are not identically zero)
such that EB11Xt “ B11µpt{T q ” µ1 for a constant d1 ˆ 1 vector µ1 or, at the model level,

B11µpuq “ µ1, u P p0, 1s. (1.2)

Definition 1.1. The largest d1 for which (1.2) holds is called the cotrending dimension of the
corresponding cotrending subspace B1, spanned by the columns of B1. Similarly, d2 “ p ´ d1 is
called the noncotrending dimension of the corresponding noncotrending subspace B2, with B2 K B1.

The dimension d2 indicates how many non-constant deterministic functions drive the system (1.1).
We are interested here in inference about d1 (and hence d2), and that of the corresponding subspace.

To make inference about d1 and d2, we relate (1.2) to a problem involving matrix nullity (the
number of zero eigenvalues) and rank. The matrix in question is defined based on the following
observation. Under mild assumptions on µ (see Section 3 below), the relation (1.2) is equivalent to

B11MB1 “ 0, (1.3)

where

M “

ż 1

0
pµpuq ´ µ̄qpµpuq ´ µ̄q1du with µ̄ “

ż 1

0
µpuqdu. (1.4)

The matrix M is positive semidefinite. Then, according to (1.3),

d1 “ nltMu, d2 “ rktMu, (1.5)

where nltMu and rktMu denote the nullity and the rank of the matrix M . Inference about d1, d2

is then that about the nullity or the rank of the matrix M . Similarly, the cotrending subspace B1

is spanned by the eigenvectors associated with the zero eigenvalues of M .
A number of tests are available for the rank of a matrix, given an asymptotically normal

estimator xM of M , especially in the econometrics literature (Gill and Lewbel (1992), Cragg and
Donald (1996), Kleibergen and Paap (2006), Robin and Smith (2000)), and slightly less so in the
statistics literature (Anderson (1951), Eaton and Tyler (1991), Camba-Mendez and Kapetanios

(2001)). Furthermore, there are technical reasons for xM to be nondefinite, when M is positive
semidefinite itself, as it is the case here (Donald et al. (2007) and Section 3 below). Much of the
technical contribution of this work consists of introducing such an estimator for M in (1.4), proving
its asymptotic normality result and then applying the available matrix rank tests. We shall also
discuss what can be said about the convergence of the sample eigenvectors corresponding to the
cotrending subspace B1. Another less technical contribution is to relate the considered problem to
a number of other lines of work, as outlined next and investigated in greater depth below.

The problem described above is related to stationary subspace analysis (SSA), which was one
motivating starting point. In SSA, one similarly seeks linear combinations of vector observations
collected over time that are stationary, possibly not just at the mean but also the covariance
level. The SSA was introduced by Von Bünau et al. (2009), and studied further by Blythe et al.
(2012), Sundararajan and Pourahmadi (2018). In the work somewhat parallel to this (Sundararajan
et al. (2019)), we use similarly matrix constructs and their eigenstructure to study the SSA at the
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covariance level, supposing the mean is zero, though the overall approach turns out to be much
more involved than the one presented here.

This work, probably unsurprisingly to the reader, also has connections to principal component
analysis (PCA). Two aspects of this connection should be highlighted here and kept in mind. Unlike
in the standard PCA, to estimate M in (1.4), we shall not work with the sample covariance matrix
of the data but rather effectively with the autocovariance matrix at lag 1. Using such covariance
matrices in PCA though is not completely new; see e.g. Lam and Yao (2012). Furthermore,
from the PCA perspective, this work provides a new framework where the number of principal
components can be tested for in a theoretically justified approach.

Lastly, we shall also draw connections to cointegration. Cointegration is a, if not the, approach of
choice in modern time series analysis that also seeks linear combination of nonstationary time series
that are stationary. Nonstationarity though is understood in the form of random walks, whereas
the formulation (1.1) takes the view of deterministic trends. Similar time series realizations are
nevertheless expected to be captured by either formulation. In our real data applications, we shall
also contrast our approach to cointegration. The term “cotrending” used in this work is inspired by
“cointegrating”. While “integrated” refers to random walks, “trended” alludes here to deterministic
trends.

The rest of the paper is organized as follows. In Section 2, we introduce an estimator of M in
(1.4) and state its asymptotic normality results, whose proofs can be found in Appendix A. The
application of some of the available matrix rank tests is discussed in Section 3. Section 4 concerns
inference of the cotrending subspace B1. Section 5 details connections to PCA and cointegration.
A simulation study and applications are considered in Sections 6 and 7. Section 8 concludes.

2 Matrix estimator and its asymptotic normality

We introduce here an asymptotically normal estimator xMS for M in (1.4) and a consistent estimator
for its limiting covariance matrix. As noted in the introduction, we shall allow the covariance
matrix of the error terms Yt in the VM model (1.1) to vary with time. More specifically, we set
Yt “ σpt{T qZt with i.i.d. vectors Zt satisfying EZt “ 0, EZtZ

1
t “ Ip, so that the VM model (1.1)

becomes

Xt “ µ
´ t

T

¯

` σ
´ t

T

¯

Zt, t “ 1, . . . , T, (2.1)

where σ : r0, 1s Ñ Rpˆp. In order to use the available matrix rank tests, we seek a symmetric

estimator xMS “ xMSpT q of M such that

?
T vechpxMS ´Mq

d
Ñ N p0, Cq. (2.2)

Furthermore, we need a consistent estimator pC “ pCpT q for the resulting covariance matrix C,

that is, pC
p
Ñ C. Throughout this work,

d
Ñ and

p
Ñ stand for the convergence in distribution and

probability, respectively. For a matrix (or vector) A, we also set A2 “ AA1.

By Proposition 2.1 in Donald et al. (2007), a positive semidefinite estimator xM of M satisfying
(2.2) would necessarily have a singular limiting covariance matrix C. Most asymptotically valid
and “nondegenerate” matrix rank tests found in the literature assume that C is nonsingular. Non-
singularity can often be achieved by working with an estimator of M which is nondefinite. For this
reason, as an estimator of M , we suggest the symmetrized sample autocovariance matrix at lag 1
given by

xMS “
1

2
pxM ` xM 1q (2.3)
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with

xM “
1

T

T´1
ÿ

t“1

pXt ´ sXT qpXt`1 ´ sXT q
1 and sXT “

1

T

T
ÿ

t“1

Xt. (2.4)

(See also Remark 2.1 for some insight into (2.3).) The following proposition formulates the asymp-

totic normality result for xMS . The matrix D`p “ pD1pDpq
´1D1p appearing below is the Moore-

Penrose inverse of the duplication matrix Dp, and is known as the elimination matrix; see Magnus
and Neudecker (1999). We call a function on r0, 1s piecewise continuous if r0, 1s can be partitioned
into a finite union of subintervals where the function is continuous, has left and right limits at the
subinterval endpoints, and is also right-continuous.

Proposition 2.1. Let Xt follow the model (2.1) with piecewise continuous µ, σ2 and i.i.d. Zt
satisfying EZt “ 0, EZtZ

1
t “ Ip and E }Zt}

2`δ ă 8 for some δ ą 0. Then, the estimator xMS of
M satisfies (2.2) with the limiting covariance matrix

C “ D`p

´

ż 1

0
σ2puq b σ2puqdu` 4

ż 1

0
pµpuq ´ µ̄qpµpuq ´ µ̄q1 b σ2puqdu

¯

D`
1

p . (2.5)

The proof of Proposition 2.1 can be found in Appendix A. The following corollary formulates
the result when σ2puq ” Σ does not depend on u.

Corollary 2.1. When σ2puq ” Σ, Proposition 2.1 holds with the limiting covariance matrix

C “ D`p ppΣb Σq ` 4pM b ΣqqD`
1

p . (2.6)

Remark 2.1. The intuition behind the estimator xMS in (2.3) is quite simple. Replacing sXT by µ̄
for simplicity, note that

E

˜

1

T

T´1
ÿ

t“1

pXt ´ µ̄qpXt`1 ´ µ̄q
1

¸

“
1

T

T´1
ÿ

t“1

´

µ
´ t

T

¯

´ µ̄
¯´

µ
´ t` 1

T

¯

´ µ̄
¯1

,

where we used the fact that EZtZ
1
t`1 “ 0. The latter expression approximates M for piecewise

continuous µ.

The following proposition gives a consistent estimator for the limiting covariance matrix C in
(2.5) and (2.6). It is proved in Appendix A.

Proposition 2.2. Under the assumptions of Proposition 2.1, the estimator

pC “ D`p
1

T

T´3
ÿ

t“1

´1

4
p∆Xt`1q

2 b p∆Xt`3q
2 ` 2pp∆Xt`3q

2 b pXt ´ sXT qpXt`1 ´ sXT q
1q

¯

D`
1

p (2.7)

with ∆Xt “ Xt ´Xt´1, is an asymptotically unbiased and consistent estimator for C in (2.5).

The following corollary gives a simpler estimator for the limiting covariance matrix in Corollary
2.1.

Corollary 2.2. Under the assumptions of Proposition 2.1 and when σ2puq ” Σ, the estimator

pC “ D`p pp
pΣb pΣq ` 4pxMS b pΣqqD`

1

p with pΣ “
1

T

T´1
ÿ

t“1

p∆Xt`1q
2

with xMS as in (2.4), is an asymptotically unbiased and consistent estimator for C in (2.6).
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As noted above, we want to have nonsingular limiting covariance matrix C of the estimator xMS

to ensure the applicability of available matrix rank tests. This motivated the choice of a nondefinite
estimator xMS , yielding the limiting covariance matrix C in (2.5). Since pµpuq ´ µ̄qpµpuq ´ µ̄q1 in
(2.5) might be nondefinite, nonsingularity can be achieved through

ş1
0 σ

2puq b σ2puqdu. For this
reason, we require hereafter σ2puq to be nonsingular for all u P p0, 1s.

3 Inference of (non)cotrending dimension

In this section, we give more details about the application of available matrix rank tests to infer
rktMu (or nltMu) having a matrix estimator xMS satisfying (2.2). We start by justifying the
statements in (1.5).

Lemma 3.1. Suppose that µ is piecewise continuous and let d1, d2 be the cotrending and non-
cotrending dimensions defined for µ in Section 1. Then, the relations (1.5) hold.

Proof: The cotrending and noncotrending dimensions d1, d2 are defined in terms of the relation
(1.2). Since µ1 “ B11µ̄, (1.2) can be written as

B11pµpuq ´ µ̄q “ 0,

which implies (1.3). The converse is a consequence of writing (1.3) as

ż 1

0
px1B11pµpuq ´ µ̄qq

2du “ 0

for any x P Rd1 . This implies that x1B11pµpuq ´ µ̄q “ 0 a.e. du, for all x. By Fubini’s theorem,
x1B11pµpuq ´ µ̄q “ 0 a.e. dxdu and because of continuity in x, x1B11pµpuq ´ µ̄q “ 0 for all x, a.e. du.
The latter implies that B11pµpuq ´ µ̄q “ 0 a.e. du. Since µ is piecewise continuous, we also have
B11pµpuq ´ µ̄q “ 0 for all u, which implies (1.2).

To test for the rank of the matrix M , we use the so-called SVD matrix rank test proposed
by Kleibergen and Paap (2006), and more precisely, its analogue for symmetric matrices found in
Donald et al. (2007). The test has some advantages over other matrix rank tests, for example,
the limiting covariance matrix C in (2.2) is not required to have a Kronecker product structure.
Consider the following hypothesis testing problem,

H0 : rktMu “ r vs. H1 : rktMu ą r, (3.1)

where r “ 0, . . . , p´ 1 is fixed. The SVD matrix rank test is based on the singular value decompo-
sition of M as

M “ USU 1 “

ˆ

U11 U12

U21 U22

˙ˆ

S1 0
0 S2

˙ˆ

U 111 U 121

U 112 U 122

˙

,

where U is orthogonal and the diagonal matrix S consists of the singular values of M in decreasing
order. The matrices S1 and U11 are of dimension rˆr and the other matrices in the above partition
have corresponding dimensions. Furthermore, as in Donald et al. (2007), M can be written as

M “ ArBr `Ar,KΛrBr,K

with

Ar “

ˆ

U11

U21

˙

S1U
1
11, Br “

`

Ir pU 111q
´1U21

˘

, Ar,K “ B1r,K “

ˆ

U12

U22

˙

U´1
22 pU22U

1
22q

1
2
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and
Λr “ pU22U

1
22q

´ 1
2U22S2U

1
22pU22U

1
22q

´ 1
2 .

Then, the null hypothesis H0 : rktMu “ r is equivalent to H0 : Λr “ 0. In the SVD matrix

rank test, the latter hypothesis is tested having the symmetric matrix estimator xMS in (2.3).

Let pΛr be the quantity analogous to Λr but defined through xMS . By Proposition 2.1, the es-
timator xMS satisfies (2.2) with the limiting covariance matrix (2.5). Then, by Donald et al.

(2007), Proposition 4.1,
?
T vechppΛrq

d
Ñ N p0,Ωrq under the hypothesis H0 : Λr “ 0, where

Ωr “ D`p´rpBr,K b A1r,KqDpCD
1
ppB

1
r,K b Ar,KqD

`1

p´r and the matrix C is defined in (2.5). The
suggested SVD test statistic is then

pξsvdprq “ T vechppΛrq
1
pΩ´1
r vechppΛrq.

Here, pΩr is defined by replacing the component matrices of Ωr by their sample counterparts,
including pC defined by (2.7). By Theorem 4.1 in Donald et al. (2007), under H0 : rktMu “ r and
if the matrix Ωr is non-singular,

pξsvdprq
d
Ñ χ2ppp´ rqpp´ r ` 1q{2q, (3.2)

where χ2pKq denotes the chi-square distribution with K degrees of freedom. Furthermore, Theorem

4.1 in Donald et al. (2007) gives pξsvdprq
p
Ñ8 under H1 : rktMu ą r.

The estimator of the matrix rank itself is defined as the first r, starting with r “ 0, then r “ 1
and so on till r “ p ´ 1, for which the null hypothesis H0 : rktMu “ r is not rejected. By using
the aforementioned asymptotic results, the resulting estimator can be shown to be consistent for
rktMu in a standard way when the significance level suitably depends on the sample size.

4 Inference of (non)cotrending subspace

We are interested here in inference about the cotrending subspace B1 spanned by the columns of
B1 satisfying (1.2) and hence also about the noncotrending subspace B2 characterized by B2 K B1.
The cotrending subspace is spanned by the eigenvectors of M in (1.4) associated with the zero

eigenvalues. We shall establish a consistency result for the estimated eigenvectors when using xMS

in (2.3) for M , and also discuss an available method to test whether a certain set of vectors lies in
B1.

Let λ1 ě ¨ ¨ ¨ ě λp´d1 ą λp´d1`1 “ ¨ ¨ ¨ “ λp “ 0 and pλ1 ě ¨ ¨ ¨ ě pλp denote the eigenvalues of the

symmetric matrices M and xMS , respectively. Let also vj and pvj be the corresponding orthonormal

eigenvectors satisfying Mvj “ λjvj and xMSpvj “ pλjpvj . Furthermore, define the pˆ d matrices

V “ pvi, vi`1, . . . , vi`d´1q and pV “ ppvi, pvi`1, . . . , pvi`d´1q. (4.1)

Observe that V “ B1 when i “ p ´ d1 ` 1 and d “ d1. The next result proves consistency of the
eigenvectors in pV . A short proof can be found in Appendix A and is based on the Davis-Kahan
theorem.

Proposition 4.1. Suppose mintλi´1 ´ λi, λi`d´1 ´ λi`du ą 0, where λ0 :“ 8 and λp`1 :“ ´8.

Then, there is an orthogonal matrix pO P Rdˆd such that

}pV pO ´ V }F “ Op

´ 1
?
T

¯

,

where pV and V are as in (4.1).
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The condition in the proposition is naturally satisfied for i “ p ´ d1 ` 1 and d “ d1, yielding
consistency of the estimated cotrending vectors pV “ pB1.

Suppose that pr is the estimated rank of the matrixM following the proposed testing procedure in
Section 3. Then, the estimated cotrending dimension pd1 “ p´pr refers to the number of eigenvectors
which generate the estimated cotrending subspace pB1. We expect that pd1 “ d1 in the asymptotic
sense and that in some situations, the respective estimated eigenvectors in pB1 will have some of
the entries close to zero, suggesting that the corresponding component series are not involved in
cotrending relations. For this reason, one might be interested to test if the vectors that one gets
by setting these small entries to zero are still part of the cotrending subspace. To test whether a
certain set of vectors lies in the cotrending subspace B1, we use a test proposed by Tyler (1981).

Let Λ “ pλi, λi`1, . . . , λi`d´1q be the eigenvalues associated with the eigenvectors from V in
(4.1). The total eigenprojection of M associated with Λ is defined as

P0 “
ÿ

λPΛ

Pλ with Pλj “ vjv
1
j .

The total eigenprojection pP0 of xMS is defined analogously by replacing the eigenvalues and eigen-
vectors in Λ and V by their sample counterparts. Consider the hypothesis testing problem

H0 : P0Q “ Q vs. H1 : P0Q ‰ Q, (4.2)

where Q denotes a pˆq matrix with rktQu “ q ď d. In other words, we want to test if the columns
of the matrix Q lie in the subspace generated by the eigenvectors of M in V associated with the
eigenvalues λi, . . . , λi`d´1. When i “ p ´ d1 ` 1 and d “ d1, H0 states that the columns of Q are
in B1.

By Proposition 2.1, the estimator xMS satisfies (2.2) with a limiting covariance matrix C in

(2.5). Using the relation vecpMq “ Dp vechpMq, one may also infer that
?
T vecpxMS ´ Mq

d
Ñ

N p0, DpCD
1
pq holds, which coincides with the required assumptions in Tyler (1981). Furthermore,

by Proposition 2.2, there is a consistent estimator pC for C and C is nonsingular. Then, by Theorem
4.1 in Tyler (1981),

vecp
?
T pIp ´ pP0qQq

d
Ñ N p0,ΣQq

under the hypothesis H0 : P0Q “ Q, where

ΣQ “ pQ
1 b IpqR

1
ΛDpCD

1
pRΛpQb Ipq

with C as in (2.5) and a p2 ˆ p2 matrix RΛ defined as

RΛ “
ÿ

λPΛ

ÿ

µRΛ

1

pλ´ µq
Pλ b Pµ.

The suggested test statistic is then defined as

pγevdpQq “ T pvecpQqq1pΣ`Q vecpQq,

where pΣ`Q denotes the Moore-Penrose inverse of pΣQ. The matrix pΣQ is defined by replacing the

component matrices of ΣQ by their sample counterparts, i.e. RΛ is written in terms of pV and C is

replaced by its consistent estimator pC given in (2.7). Then, by Theorem 5.3 in Tyler (1981), under
H0 : P0Q “ Q,

pγevdpQq
d
Ñ χ2pqpp´ dqq.
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As shown in Section 6 in Tyler (1981), based on the preceding test, one can define an asymptotic
100p1´ αq% confidence region as

tQ | Q P Rpˆq, rktQu “ q, pγevdpQq ă χ2
1´αpqpp´ dqqu, (4.3)

where χ2
1´αpKq denotes the p1´αq-quantile of a chi-square distribution with K degrees of freedom,

and Q “ tv P Rp|v “ Qw for some w P Rqu is the subspace generated by Q. Since the matrix
ΣQ depends on the matrix Q one is testing for, it has to be recalculated for each Q. In fact, the

confidence region in (4.3) can be expressed in terms of the estimated eigenvectors pV in (4.1) as

tQ | pV 1Q “ Id and T pvecpQ´ pV qq1pΣ`
pV

vecpQ´ pV q ă χ2
1´αprpp´ dqqu. (4.4)

See Section 6 in Tyler (1981).

5 Connections to other approaches

We discuss here connections of the VM model and the introduced estimation framework to principal
component analysis (PCA) (Section 5.1) and cointegration (Section 5.2).

5.1 Connections to PCA

It is instructive to contrast our model and approach to PCA. In PCA, one typically works with the
sample covariance matrix

pΓ “
1

T

T
ÿ

t“1

pXt ´ sXT qpXt ´ sXT q
1,

which is the autocovariance function at lag 0, rather than this function at lag 1 as in (2.3) and
(2.4). This has the following implications. For the VM model, we get by replacing X̄T by µ̄ for
simplicity,

E pΓ “ E
´ 1

T

T
ÿ

t“1

pXt ´ µ̄qpXt ´ µ̄q
1
¯

“
1

T

T
ÿ

t“1

´

µ
´ t

T

¯

´ µ̄
¯´

µ
´ t

T

¯

´ µ̄
¯1

`
1

T

T
ÿ

t“1

σ
´ t

T

¯

EpZtZ
1
tqσ

´ t

T

¯1

“M `

ż 1

0
σ2puqdu`O

´ 1

T

¯

,

that is, pΓ is not expected to be a consistent estimator for M . Another important difference between
pΓ and our estimator xMS , as noted above, is that pΓ is positive semidefinite whereas xMS is nondefinite.

Vice versa, we also note that our estimator xMS would not be of much interest in the many PCA
scenarios that work with independent copies of the vectors Xt (e.g. Jolliffe (1986)). Indeed, for

such vectors, the estimator xMS based on the autocovariances at lag 1 would be zero asymptotically.

5.2 Connections to cointegration

In this section, we establish interesting connections of our approach to cointegration (Granger
(1981), Engle and Granger (1987), Johansen (1991)). In cointegration, one similarly seeks linear
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combinations of nonstationary time series that become stationary but this is for stochastic random
walks (rather than deterministic trends) and with stationarity understood in a stronger sense (than
just that at the mean level). We focus below on a popular class of vector error correction (VEC)

models that allow for cointegration, and shall examine the behavior of our matrix estimator xMS for
this class of models. The obtained results will shed light on how our approach and cointegration
relate.

Suppose that a p-vector time series Xt, t P Z, follows a VARp`q model

Xt “
ÿ̀

i“1

ΠiXt´i ` εt (5.1)

with
E ε0 “ 0, E εtε

1
t “ Σε, E εtε

1
s “ 0, t ‰ s. (5.2)

It can be written in the form of a VEC model,

∆Xt “ ΠXt´1 `

`´1
ÿ

i“1

Γi∆Xt´i ` εt

with
Π “ Π1 ` ¨ ¨ ¨ `Π` ´ Ip, Γi “ ´pΠi`1 ` ¨ ¨ ¨ `Π`q. (5.3)

Assume that Xt is at most integrated of order one, denoted as Ip1q, so that the first difference
∆Xt “ Xt ´Xt´1 is stationary, denoted as Ip0q. In this setting, Engle and Granger (1987) defined
the cointegrating rank in terms of the matrix Π in (5.3) as

r˚ “ rktΠu. (5.4)

The following three cases are distinguished. The case r˚ “ p when Π has full rank, corresponds to
a stationary VAR series Xt. When r˚ “ 0 or Π “ 0, the VARp`q model reduces to a VARp` ´ 1q
model in first differences. When 0 ă r˚ ă p, the series is said to be cointegrated of order r˚. In this
case, the series has r˚ linearly independent cointegrating relationships, that is, linearly independent
vectors βi, i “ 1, . . . , r˚, such that β1iXt is stationary. Furthermore, the matrix Π in (5.3) can be
written as

Π “ αβ1 (5.5)

with matrices α, β of dimension pˆr˚ and full rank. The matrix β consists of r˚ linearly independent
columns, the cointegrating vectors βi. These vectors also form a basis for the cointegrating subspace.

Remark 5.1. Note the following curious difference between our cotrending approach and cointe-
gration. While both cotrending dimension and cointegrating rank aim to measure similar quantities,
the former is related to the nullity of a certain matrix in our approach whereas the latter is related
to the rank of a matrix in cointegration. This has certainly been quite confusing to us, especially
when comparing the two approaches, and should be kept in mind for the rest of this work. On the
other hand, this disparity should perhaps not be surprising from the following observation: it is
well known that the cointegrating rank is also the nullity of the spectral density matrix at the zero
frequency of the differenced series ∆Xt (e.g. Hayashi (2011), Maddala and Kim (1999)).

To analyze our estimator in the context of cointegration, we need some technical assumptions.
The so-called Granger representation, introduced in Johansen (1991), Theorem 4.1, enables one to
separate the cointegrated process into stationary and nonstationary components. Define

Cpzq “ Π`
ÿ̀

i“0

Γip1´ zqz
i,

9



where Γ0 “ ´Ip. Let also αK, βK be the orthogonal complements of α, β in (5.5). Then, if
detpCpzqq “ 0 has roots on or outside the unit circle and if the matrix

α1K

´

Ip ´
`´1
ÿ

i“1

Γi

¯

βK

is invertible, the time series Xt has the representation

Xt “ L
t
ÿ

i“1

εi `
8
ÿ

j“0

rLjεt´j ` rX0, (5.6)

with tεtutPZ as in (5.1) and rX0 as an initial value. Furthermore,

L “ βK

´

α1K

´

Ip ´
`´1
ÿ

i“1

Γi

¯

βK

¯´1
α1K (5.7)

and the series
ř8
j“0 }

rLj}F is finite, where } ¨ }F denotes the Frobenius norm. The first term in (5.6)
is Ip1q and the second one is Ip0q. The matrix L has rank p ´ r˚ and determines the number of
noncointegrating stochastic random walks.

We suppose hereafter that the assumptions on the process to admit the Granger representation
are satisfied. Furthermore, we decompose the matrix L into its non-zero and zero rows. Without
loss of generality, we write L “ pL1n, 0

1
p´nq

1, where the subscript n refers to the n non-zero rows,
and p´n to the p´n zero rows. Similarly, decompose the identity matrix into its first n rows and
the remaining p´ n rows as Ipˆp “ pI

1
1,n, I

1
2,p´nq

1. The following result investigates the asymptotic

behavior of the estimator xMS defined in (2.3) for a cointegrated system in (5.1). It is proved in
Appendix A.

Proposition 5.1. Suppose that Xt follows a VARp`q model (5.1) with cointegrating rank 0 ď r˚ ď
p. Assume also that Σε in (5.2) is positive definite and E }ε0}

4 ă 8. Then, the symmetric estimator
xMS in (2.3) satisfies

∆
´ 1

2
2,T

xMS∆
´ 1

2
2,T

d
Ñ

˜

LnΣ
1
2
ε ZΣ

1
2
ε L1n 0

0 1
2pΥp´np1q `Υ1p´np1qq

¸

, (5.8)

where ∆2,T “ diagpTIn, Ip´nq, Υp´np1q “ I2,p´n
ř8
j“0

rLj rL
1
j`1I

1
2,p´n, and

Z “

ż 1

0
pZpuq ´ sZqpZpuq ´ sZq1du with sZ “

ż 1

0
Zpuqdu, (5.9)

and a p-vector standard Brownian motion tZptqutPr0,1s.

By construction, rktLnu “ rktLu “ p ´ r˚. For this reason and since Z in (5.9) and Σ
1
2
ε are

positive definite,

rktLnΣ
1
2
ε ZΣ

1
2
ε L

1
nu “ rktLnu “ p´ r˚.

Then,

rk

#˜

LnΣ
1
2
ε ZΣ

1
2
ε L1n 0

0 1
2pΥp´np1q `Υ1p´np1qq

¸+

ě p´ r˚.

10



In general, this suggests that testing for nullity with xMS in the cotrending approach will yield
estimates smaller than the true cointegrating rank. However, when the matrix L is assumed to
have only non-zero rows, the convergence result (5.8) for xMS reduces to

1

T
xMS

d
Ñ LΣ

1
2
ε ZΣ

1
2
ε L

1.

Then, the corresponding rank is given by

rktLΣ
1
2
ε ZΣ

1
2
ε L

1u “ rktLu “ p´ r˚,

that is, the cotrending approach will tend to produce the same estimates as the cointegrating rank.
In practice, one can ensure this condition on L by multiplying the VARp`q model with a random
matrix R P Rpˆp with full rank, since rktRLu “ rktLu. As long as L is “not too sparse,” this
ensures that the matrix RL has only non-zero rows.

While the above discussion (and subsequent numerical results) argues that the cotrending ap-
proach will tend to give the cointegrating rank for cointegrated system, the converse is not nec-
essarily expected as we illustrate in Section 6 below. We also note that the discussion above also
holds for r˚ “ 0, that is, the situation associated with a spurious regression of independent random
walks. Thus, in this case, the cotrending approach will tend to estimate the cotrending dimension
r˚ “ 0 as well.

6 Simulation study

We use here Monte Carlo simulations to assess the performance of our cotrending test and to
compare it to a cointegrating test. For the cotrending test, we formulate the hypothesis testing
problem (3.1) as

H0 : d1 “ d vs. H1 : d1 ă d,

where d “ 1, . . . , p. The sequential testing here starts with d “ p, then d “ p ´ 1 and so on, till
the null hypothesis is not rejected. To test for the cointegrating rank r˚ in (5.4), we apply the
widely used Johansen test (Johansen (1991)). The corresponding hypothesis testing problem can
be written as

H0 : r˚ “ r vs. H1 : r˚ ą r,

where r “ 0, . . . , p ´ 1. The sequential testing is carried out for r “ 0, r “ 1, etc. We present
the simulation results in PP-plots as follows. Due to the different hypothesis testing problems, we
present p` 1 plots for different values d “ 1, . . . , p and r “ 0, . . . , p´ 1. The probability α P p0, 1q
on the vertical axis is plotted versus plpαq “ Pppξplq ą qlpαqq, l “ d, r on the horizontal axis. The
values qlpαq are such that Pppξplq ą qlpαqq “ α. The respective test statistic pξplq either coincides
with pξsvdplq in (3.2) or the Johansen test statistic. The probability plpαq is estimated with 500
Monte Carlo replications of the corresponding test statistics. The critical values for the Johansen
test are approximated as proposed in Johansen (1988), p. 239.

As the first numerical example, we consider Xt from the VM model (1.1) with p “ 5, T “ 500
and

µpuq “ p0, 7, 14, sinp7uq, sinp7pu` 0.2qqq1. (6.1)

The errors Yt are multivariate Gaussian i.i.d. with EYtY
1
t “ I5. The true cotrending dimension for

(6.1) is d1 “ 3. Observe from Figure 1 that the Johansen test rejects the considered hypotheses all
the time, thus settling on r˚ “ p “ 5 and suggesting that the series is stationary. The cotrending

11
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Figure 1: PP-plots for a simulated VM model with true cotrending dimension d1 “ 3.
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test rejects the hypothesis for d1 “ 4, 5 and detects the cotrending dimension d1 “ 3 with the size
matching the nominal value quite well, since dashed line lies close to the 45˝ line for smaller α.

For a second example, we simulate a three dimensional VARp2q model with true cointegrating
rank r˚ “ 2 and sample size T “ 500. The model in (5.1) reduces to

Yt “ Π1Yt´1 `Π2Yt´2 ` εt. (6.2)

The series εt is simulated as a multivariate Gaussian i.i.d. series and the coefficient matrices are
chosen as

Π1 “

¨

˝

0.5 0.2 0
´0.2 ´0.5 0.7
0.3 0 ´0.1

˛

‚, Π2 “

¨

˝

0.5 ´0.2 0
´0.1 0.3 ´0.2
0.7 0.1 ´0.5

˛

‚. (6.3)

The true cointegrating rank is r˚ “ 2, since

Π “ ´pI3 ´Π1 ´Π2q “

¨

˝

0 0 0
´0.3 ´1.2 0.5

1 0.1 ´1.4

˛

‚ (6.4)

has rank 2. Observe from Figure 2 that both tests detect the cointegrating rank mostly correctly,
though the Johansen test is quite undersized for this example.

In summary, the proposed cotrending test works in both examples as expected, while the coin-
tegrating test certainly does not detect the cotrending dimension. The latter result was expected,
since the simulated data in the first example appear stationary.

7 Applications

In this section, we apply the testing procedures proposed in Sections 3 and 4 to estimate the
cotrending dimension and to make inference about the cotrending space in two real data sets. For
comparison, we also apply the Johansen test to estimate the cointegrating rank.

The first data set concerns consumption in the United Kingdom. Three different variables are
considered: the real consumption expenditure, the real income and the real wealth. The three
series make part of the Raotbl3 data set of the R package urca (Pfaff (2008)). Previous works on
cointegrated time series have used this data set; see Holden and Perman (1994) and Pfaff (2008).
The data are quarterly, from the fourth quarter in 1966 to the second quarter in 1991. The time
plot of the three series is given in the left plot of Figure 3. From bottom to top, the time series
represent consumption expenditure, income and wealth. Due to their similar temporal patterns,
one might expect a relationship between consumption and income. Our testing procedure estimates
the cotrending dimension and the cotrending space vector as

pd1 “ 1 and pB1 “
`

0.7349 ´0.6758 ´0.0571
˘1
. (7.1)

(We used a 5% significance level in sequential testing for pd1.) As expected, the weights 0.7349 and
´0.6758 are larger for the first two series (consumption and income). Since the third component
of the vector pB1 in (7.1) is close to zero, one might suspect that the vector

Q “
`

0.7349 ´0.6758 0
˘1

is an element of the underlying true cotrending subspace. In terms of the notation and procedure
in Section 4, however, the hypothesis H0 : P0Q “ Q in (4.2) is rejected at a 5% significance level.
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Figure 2: PP-plots of a simulated VARp2q model with true cointegrating rank r˚ “ 2.
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Figure 3: The time plots of the quarterly consumption series in the United Kingdom from 1967
to 1991 (left hand), and the daily closing price series of three different ETF baskets in 2015 (right
plot).
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Figure 4: Visualization of the asymptotic 0.95 confidence region with respect to pB1 in (7.1) for the
first data example (Consumption data of the United Kingdom).

Figure 4 shows the asymptotic 95% confidence region (4.4) computed from the estimated vector
pV “ pB1. Observe that the first and second components (represented by the x- and y-axes) of
a cotrending vector Q in the confidence region are non-zero. Even though the third component
(represented by the z-axis) takes values close to zero, it cannot be set to zero either. For this
reason, all three time series are part of the cotrending relation.

The cointegrating rank r˚ estimated by the Johansen test, at a 5% significance level, is pr˚ “ 1,
and coincides with the estimated cotrending dimension. The corresponding cointegrating vector,
normalized to the first component of the cotrending vector in (7.1), is

`

0.7349 ´0.6837 ´0.0460
˘1
.

The second and third components are also similar to those of the cotrending vector in (7.1).
The second data set concerns five different ETF baskets, namely SPY, IVV, VOO, VBK and

QQQ, available from finance.yahoo.com through the R package quantmod (Ryan and Ulrich (2018)).
The considered ETFs track the US S&P 500 stock market index. The time plot of the five series is
given in the right plot of Figure 3. The data set consists of the daily closing prices for the period
Jan 01, 2015 to Dec 31, 2015. Proceeding as for the first data set above, we estimate the cotrending
dimension and the cotrending space vectors as

pd1 “ 2 and pB1 “

ˆ

0.8061 ´0.4368 ´0.3993 0.0002 0.0002
´0.0026 0.6721 ´0.7404 0.0008 0.0069

˙1

. (7.2)

Replacing the small entries of the matrix pB1 in (7.2) with zero, leads to

Q “

ˆ

0.8061 ´0.4368 ´0.3993 0 0
0 0.6721 ´0.7404 0 0.0069

˙1

,

which could naturally be tested to lie in the cotrending subspace B1. Testing for this through the
hypothesis in (4.2) at a 5% significance level, the null is not rejected. As a result, one gets two
cotrending relations, each involving three data series.
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Applying the Johansen test to estimate the cointegrating rank r˚ yields pr˚ “ 2, which again
coincides with the estimated cotrending dimension. The corresponding cointegrating vectors are
estimated as

ˆ

0.8061 ´0.4327 ´0.4042 0.0005 0.0005
0.0507 0.6721 ´0.7992 0.0012 0.0078

˙1

,

which are normalized with respect to the estimated cotrending space vectors in (7.2).

8 Conclusions

In this work, we proposed a modeling framework for p-vector time series exhibiting deterministic
trends that allows testing about linear combinations across the p series which have constant means
over time. The methodology could be viewed as an alternative to cointegration analysis that
concerns stochastic trends.

Related to the last point, in particular, several other general remarks should be made. Possible
advantages of the cotrending approach over cointegration are its relative simplicity and nonpara-
metric nature, with deterministic trends even allowed to be discontinuous. A possible present
disadvantage of the cotrending approach is its perhaps oversimplified model. But we view this
model as foundational in considering more elaborate models. For example, one could try to incor-
porate temporal dependence in errors Yt and we expect that in this case, a suitable estimator of M
should involve the average of autocovariance functions over more lags than just one.

Yet another difference of the cotrending and the cointegration approaches is that the former
makes no implications about existing long-term equilibria in a system, though the VM model could
in principal be used in short-term forecasting as well. Whether the lack of long-term equilibria is
viewed as disadvantage is perhaps up for debate.

A Proofs

Proof of Proposition 2.1: To prove the asymptotic normality of the estimator xMS in (2.3), we first

consider xM in (2.4) and prove its asymptotic normality using a result on possibly nonstationary
m-dependent random variables in Sen (1968).

The estimator xM in (2.4) can be written as

xM “
1

T

T´1
ÿ

t“1

pXt ´ sXT qpXt`1 ´ sXT q
1 “ R1 ´R2 ´R3 `R4 (A.1)

with

R1 “
1

T

T´1
ÿ

t“1

´

µ
´ t

T

¯

´ µ̄T

¯´

µ
´ t` 1

T

¯

´ µ̄T

¯1

,

R2 “
1

T

T´1
ÿ

t“1

pYtȲ
1
T ` ȲTY

1
t`1q ´ ȲT Ȳ

1
T ,

R3 “
1

T

T´1
ÿ

t“1

”

sYT

´

µ
´ t` 1

T

¯

´ µ̄T

¯1

`

´

µ
´ t

T

¯

´ µ̄T

¯

sY 1T

ı

,

R4 “
1

T

T´1
ÿ

t“1

”

YtY
1
t`1 ` Yt

´

µ
´ t` 1

T

¯

´ µ̄T

¯1

`

´

µ
´ t

T

¯

´ µ̄T

¯

Y 1t`1

ı

,
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where µ̄T “
1
T

řT
t“1 µ

´

t
T

¯

. The term R1 is the deterministic part in the decomposition (A.1), R2,

R3 will not contribute to the limit and R4 will determine the normal limit. The deterministic term
R1 satisfies

R1 “M `O
´ 1

T

¯

(A.2)

and the second term R2 is such that
?
TR2 “

?
T sYT sY

1
T ` opp1q “ opp1q. (A.3)

The term R3 satisfies

?
TR3 “

1
?
T

T
ÿ

t“1

Yt
1

T

T´1
ÿ

t“1

´

µ
´ t` 1

T

¯

´ µ̄T

¯1

`
1

T

T´1
ÿ

t“1

´

µ
´ t

T

¯

´ µ̄T

¯ 1
?
T

T
ÿ

t“1

Y 1t “ opp1q (A.4)

by the central limit theorem and since 1
T

řT´1
t“1

´

µ
´

t
T

¯

´ µ̄T

¯

“ Op 1
T q. It thus remains to prove

the asymptotic normality of R4.
Consider a real matrix Λ “ pλijqi,j“1,...,p. By the Cramér-Wold theorem, it is enough to prove

the asymptotic normality of 1
T

řT
t“1wt, where

wt “ vecpΛq1 vecpWtq, Wt “ YtY
1
t`1 ` Yt

´

µ
´ t` 1

T

¯

´ µ̄T

¯1

`

´

µ
´ t

T

¯

´ µ̄T

¯

Y 1t`1.

The multivariate sequence tWtu is 1-dependent and so is the univariate sequence twtu. Lemma
2.2 in Sen (1968) requires the moment condition E |wt|

2`δ ă 8 for some δ ą 0 and for all t.1 Let
k “ 2 ` δ and c be a generic constant that depends on p and can change from line to line. Set
Wt “ pWij,tqi,j“1,...,p and let a single subscript i refer to the ith component of the respective vector.
Then,

E |wt|
k “ E | trpΛ1Wtq|

k ď

p
ÿ

i,j“1

p2pk´1q E |λjiWij,t|
k ď c max

1ďi,jďp
|λij |

k
p
ÿ

i,j“1

E |Wij,t|
k

ď c3k´1
p
ÿ

i,j“1

pE |Yi,tYj,t`1|
k ` E |Yi,t

´

µj

´ t` 1

T

¯

´ µ̄j,T

¯

|k ` E |
´

µi

´ t` 1

T

¯

´ µ̄i,T

¯

Yj,t|
kq,

(A.5)

where we used Hölder’s inequality. The conclusion that the last expression is finite follows by using

E |Yi,t|
k ď pk´1

p
ÿ

l“1

sup
1ďtďT

|σil

´ t

T

¯

|k E |Zl,0|
k ă 8,

since E }Z0}
k ă 8, and the piecewise continuity of µ and σ2. Combining (A.2), (A.3), (A.4), (A.5)

and Lemma A.1 below, Lemma 2.2 in Sen (1968) gives

?
T vecpxM ´Mq

d
Ñ N p0, rCq

with rC as in (A.7). Note that D`p vecpAq “ vechpAq and D`p Np “ D`p with Np “
1
2pIp2 ` Kpq,

where Kp denotes the so-called commutation matrix, which transforms vecpAq into vecpA1q for a

matrix A P Rpˆp. Furthermore, Np vecpxMq “ vecpxMSq. These observations yield

?
T vechpxMS ´Mq

d
Ñ N p0, Cq

with C as in (2.5).

1The moment condition in Sen (1968) is stated with δ “ 1 but the proof also works for δ ą 0.
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The next auxiliary result was used in the proof of Proposition 2.1 above.

Lemma A.1. Suppose that the assumptions of Proposition 2.1 hold. Let xM be the estimator in
(2.4) and R4 be the last term in the decomposition (A.1). Then, the covariance matrices of xM ´M
and R4 satisfy

EpvecpxM ´MqpvecpxM ´Mqq1q “ ER4R
1
4 ` o

´ 1

T

¯

“
1

T
rC ` o

´ 1

T

¯

(A.6)

with

rC “

ż 1

0
σ2puq b σ2puqdu` 2

ż 1

0
pµpuq ´ µ̄qpµpuq ´ µ̄q1 b σ2puqduNp

` 2

ż 1

0
σ2puq b pµpuq ´ µ̄qpµpuq ´ µ̄q1duNp.

(A.7)

Proof: The first relation in (A.6) follows from (A.2), (A.3) and (A.4). It is thus enough to show
the second relation in (A.6) concerning the covariance of R4. Decompose R4 into R4 “ R41 `R42

with

R41 “
1

T

T
ÿ

t“1

YtY
1
t`1,

R42 “
1

T

T
ÿ

t“1

”

Yt

´

µ
´ t` 1

T

¯

´ µ̄T

¯1

`

´

µ
´ t

T

¯

´ µ̄T

¯

Y 1t`1

ı

.

We consider these terms separately to calculate the limiting covariance matrix.
For R41, we write

EpvecpR41qpvecpR41qq
1q “

1

T 2

T
ÿ

t,r“1

E
´

vecpYtY
1
t`1qpvecpYrY

1
r`1qq

1
¯

“
1

T 2

T
ÿ

t,r“1

E
´

pIp b YtqYt`1Y
1
r`1pIp b Yrq

1
¯

“
1

T 2

T
ÿ

t,r“1

E
´

pIp b YtqpYt`1Y
1
r`1 b 1qpIp b Yrq

1
¯

“
1

T 2

T
ÿ

t,r“1

EpYt`1Y
1
r`1 b YtY

1
r q “

1

T

ż 1

0
σ2puq b σ2puqdu`O

´ 1

T 2

¯

,

(A.8)

where the second equality follows by vecpABq “ pIq b Aq vecpBq “ pB1 b Imq vecpAq for an mˆ n
matrix A and an n ˆ q matrix B; see Theorem 2 in Magnus and Neudecker (1999), p. 35. In the
fourth equality, the relation AB b CD “ pAb CqpB bDq is used.

The covariance of the term R42 can be written as

EpvecpR42qpvecpR42qq
1q “

1

T
2

ż 1

0
pµpuq ´ µ̄qpµpuq ´ µ̄q1 b σ2puqduNp

`
1

T
2

ż 1

0
σ2puq b pµpuq ´ µ̄qpµpuq ´ µ̄q1duNp `O

´ 1

T 2

¯

,

(A.9)
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since for example

1

T 2

T
ÿ

t,r“1

E
”

vec
´

Yt

´

µ
´ t` 1

T

¯

´ µ̄T

¯1¯´

vec
´

Yr

´

µ
´r ` 1

T

¯

´ µ̄T

¯1¯¯1ı

“
1

T 2

T
ÿ

t,r“1

´´

µ
´ t` 1

T

¯

´ µ̄T

¯

b Ip

¯

EpYtY
1
r q

´´

µ
´r ` 1

T

¯

´ µ̄T

¯1

b Ip

¯

“
1

T 2

T
ÿ

t“1

´´

µ
´ t` 1

T

¯

´ µ̄T

¯

b Ip

¯´

1b σ2
´ t

T

¯¯´´

µ
´ t` 1

T

¯

´ µ̄T

¯1

b Ip

¯

“
1

T

ż 1

0
pµpuq ´ µ̄qpµpuq ´ µ̄q1 b σ2puqdu`O

´ 1

T 2

¯

,

where we used the same arguments as in (A.8).

Proof of Proposition 2.2: To prove the consistency of pC in (2.7), we use Theorem 2 in Andrews
(1988), which gives sufficient conditions for the law of large numbers for L1-mixingales.

For simplicity, we replace sXT with µ̄ by the weak law of large numbers and decompose the
resulting estimator pC as

1

T

T´3
ÿ

t“1

´1

4
p∆Xt`1q

2 b p∆Xt`3q
2 ` 2pp∆Xt`3q

2 b pXt ´ µ̄qpXt`1 ´ µ̄q
1q

¯

“ A1 `A2 `B1 `B2,

where setting ĂMt “ µ
´

t
T

¯

,

A1 “
1

T

T´3
ÿ

t“1

1

4
p∆ĂMt`1q

2 b p∆ĂMt`3q
2,

A2 “
1

T

T´3
ÿ

t“1

1

4

”

p∆ĂMt`1q
2 b

´

p∆Yt`3q
2 `∆Yt`3p∆ĂMt`3q

1 `∆ĂMt`3p∆Yt`3q
1
¯

`

´

p∆Yt`1q
2 `∆Yt`1p∆ĂMt`1q

1 `∆ĂMt`1p∆Yt`1q
1
¯

b p∆ĂMt`3q
2

`

´

p∆Yt`1q
2 `∆Yt`1p∆ĂMt`1q

1 `∆ĂMt`1p∆Yt`1q
1
¯

b

´

p∆Yt`3q
2 `∆Yt`3p∆ĂMt`3q

1 `∆ĂMt`3p∆Yt`3q
1
¯ı

“:
1

T

T´3
ÿ

t“1

Wt,1,

B1 “
1

T

T´3
ÿ

t“1

2p∆ĂMt`3q
2 b pĂMt ´ µ̄qpĂMt`1 ´ µ̄q

1,

B2 “
1

T

T´3
ÿ

t“1

2
”´

p∆Yt`3q
2 `∆Yt`3p∆ĂMt`3q

1 `∆ĂMt`3p∆Yt`3q
1
¯

b pXt ´ µ̄qpXt`1 ´ µ̄q
1

` p∆ĂMt`3q
2 b

´

YtY
1
t`1 ` Ytp

ĂMt`1 ´ µ̄q
1 ` pĂMt ´ µ̄qY

1
t`1

¯ı

“:
1

T

T´3
ÿ

t“1

Wt,2.

The deterministic terms A1 and B1 are asymptotically negligible, since A1 “ O
´

1
T

¯

and B1 “
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O
´

1
T

¯

. For the terms A2 and B2, note that

EA2 “
1

T

T´3
ÿ

t“1

1

4
E
´

p∆ĂMt`1q
2 b p∆Yt`3q

2 ` p∆Yt`1q
2 b p∆ĂMt`3q

2 ` p∆Yt`1q
2 b p∆Yt`3q

2
¯

“
1

T

T´3
ÿ

t“1

1

4
E
´

p∆Yt`1q
2 b p∆Yt`3q

2
¯

`O
´ 1

T

¯

“

ż 1

0
σ2puq b σ2puqdu`O

´ 1

T

¯

,

EB2 “
1

T

T´3
ÿ

t“1

2 E
´

p∆Yt`3q
2 b pXt ´ µ̄qpXt`1 ´ µ̄q

1
¯

“ 4

ż 1

0
σ2puq b pµpuq ´ µ̄qpµpuq ´ µ̄q1du`O

´ 1

T

¯

.

Then,

1

T

T´3
ÿ

t“1

pWt,1 ´ EWt,1q `
1

T

T´3
ÿ

t“1

EWt,1 ´

ż 1

0
σ2puq b σ2puqdu “

1

T

T´3
ÿ

t“1

pWt,1 ´ EWt,1q `O
´ 1

T

¯

,

1

T

T´3
ÿ

t“1

pWt,2 ´ EWt,2q `
1

T

T´3
ÿ

t“1

EWt,2 ´ 4

ż 1

0
σ2puq b pµpuq ´ µ̄qpµpuq ´ µ̄q1du

“
1

T

T´3
ÿ

t“1

pWt,2 ´ EWt,2q `O
´ 1

T

¯

,

where we subtracted the respective summands of C and included the expected values of Wt,1 and
Wt,2. To prove the convergence in probability, it is enough to consider Wt,1´EWt,1 and Wt,2´EWt,2

componentwise. We write

R1,t “ pWt,1 ´ EWt,1qij , R2,t “ pWt,2 ´ EWt,2qij ,

where the subscript denotes the ijth component for i, j “ 1, . . . , p2. The sequences tR1,tu and
tR2,tu are 3-dependent and hence L1-mixingales. By Theorem 2 in Andrews (1988), the uniformly
integrability of R1,t and R2,t implies convergence to zero in probability of the corresponding sample
means. Since,

E |R1,t|
2`δ ă 8 and E |R2,t|

2`δ ă 8 for all t “ 1, . . . , T

by using the same arguments as in (A.5), the piecewise continuity of µ and σ2 and the moment
condition E }Z0}

2`δ suffice to prove the uniformly integrability of R1,t and R2,t.

Proof of Proposition 5.1: Following the notation in Section 5.2, we decompose Xt given by its
Granger representation (5.6) in accordance to the zero and nonzero rows of the matrix L in (5.7)
into

Xt “

ˆ

X1,t

X2,t

˙

“

˜

LnZ1,t ` I1,nZ2,t ` I1,n
rX0

I2,p´nZ2,t ` I2,p´n
rX0,

¸

, (A.10)

where

Z1,t “

t
ÿ

i“1

εi and Z2,t “

8
ÿ

j“0

rLjεt´j .

Note that
1

T 1{2
rX0 “ opp1q,

1

T

T
ÿ

t“1

Z2,t “ opp1q,
1

T

T
ÿ

t“1

εt “ opp1q, (A.11)
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where the second relation follows by Proposition 6.3.10 in Brockwell and Davis (1991). As in the

proof of Proposition 2.1 we first investigate the convergence result for xM in (2.4). The normalized

estimator xM can be written as

∆
´ 1

2
2,T

xM∆
´ 1

2
2,T “

ˆ 1
TR11

1
T 1{2R12

1
T 1{2R21 R22

˙

,

where

Rij “
1

T

T´1
ÿ

t“1

pXi,t ´ sXiqpXj,t`1 ´ sXjq
1 and sXi “

1

T

T
ÿ

t“1

Xi,t for i, j “ 1, 2

with Xi,t for i “ 1, 2 as in (A.10). We consider the terms R11, R22, R12 and R21 separately.

Set sZ1 “
1
T

řT
t“1 Z1,t. Then, R11 can be written as

1

T
R11 “

1

T 2

T´1
ÿ

t“1

pX1,t ´ Ln sZ1qpX1,t`1 ´ Ln sZ1q
1 ` opp1q

“
1

T 2

T´1
ÿ

t“1

pLnZ1,t ` I1,nZ2,t ´ Ln sZ1qpLnpZ1,t ` εt`1q ` I1,nZ2,t`1 ´ Ln sZ1q
1 ` opp1q

“
1

T 2

T´1
ÿ

t“1

LnpZ1,t ´ sZ1qpZ1,t ´ sZ1q
1L1n ` opp1q,

(A.12)

where the first, second and third equalities follow by (A.11) and Lemma A.2, (i), (ii) and (iv),
below. Then, (A.12) and Lemma 3.1, (c) in Phillips and Durlauf (1986) yield

1

T
R11 “

1

T 2

T
ÿ

t“1

LnpZ1,t ´ sZ1qpZ1,t ´ sZ1q
1L1n ` opp1q

d
Ñ LnΣ

1
2
ε ZΣ

1
2
ε L

1
n.

The matrix R22 contains only stationary components. Its convergence

R22 “
1

T

T´1
ÿ

t“1

I2,p´npZ2,t ´ sZ2qpZ2,t`1 ´ sZ2q
1I 12,p´n ` opp1q

p
Ñ Υp´np1q

is a consequence of Lemma A.2, (iv), where sZ2 “
1
T

řT
t“1 Z2,t and

Υp´np1q “ I2,p´n CovpZ2,0, Z2,1qI
1
2,p´n “ I2,p´n

8
ÿ

j“0

rLj rL
1
j`1I

1
2,p´n

denotes the autocovariances of order one.
The third term R12 satisfies

1

T 1{2
R12 “

1

T 3{2

T´1
ÿ

t“1

pLnZ1,t ` I1,nZ2,t ´ Ln sZ1qpI2,p´nZ2,t`1 ´ I2,p´n
sZ2q

1 ` opp1q

“
1

T 3{2

T´1
ÿ

t“1

LnpZ1,t ´ sZ1qpZ2,t`1 ´ sZ2q
1I 12,p´n ` opp1q

“
1

T 3{2

T´1
ÿ

t“1

LnpZ1,tZ
1
2,t`1 ´

1

T 1{2
sZ1

sZ 12qI
1
2,p´n ` opp1q,

(A.13)
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where the first equality follows by (A.11) and the second equality by Lemma A.2, (iv). Finally,
1

T 1{2R12 “ opp1q, since the product of the normalized sample means 1
T 1{2

sZ1
sZ2 “ opp1q by Lemma

A.2, (iii) and (A.11). The remaining term in the last line of (A.13) satisfies 1
T 3{2

řT´1
t“1 Z1,tZ

1
2,t`1 “

opp1q by Lemma A.2 (ii).
The result for the fourth term R21 follows by the same arguments as in (A.13). The convergence

in distribution of the symmetric estimator xMS is a consequence of the established convergence of
xM .

The following lemma was used in the preceding proof.

Lemma A.2. Set Z1,t “
řt
i“1 εi and Z2,t “

ř8
j“0

rLjεt´j, where tεtutPZ is a sequence of i.i.d.

random vectors satisfying (5.2) with positive definite Σε and E }ε0}
4 ă 8, and

ř8
j“0 }

rLj}F ă 8.
Then,

(i) 1
T

řT´1
t“1 Z1,t´1ε

1
t

d
Ñ 1

2pΣ
1
2
ε Zp1qZp1q1Σ

1
2
ε ´ Σεq,

(ii) 1
T

řT´1
t“1 Z1,tZ

1
2,t`1

d
Ñ 1

2pΣ
1
2
ε Zp1qZp1q1Σ

1
2
ε ` Σεq

ř8
j“0

rL1j,

(iii) 1
T 3{2

řT
t“1 Z1,t

d
Ñ Σ

1{2
ε

ş1
0 Zptqdt,

(iv) 1
T

řT´1
t“1 Z2,tZ

1
2,t`1 ´ CovpZ2,0, Z2,1q

p
Ñ 0,

where Zptq is a p-dimensional standard Brownian motion.

Proof: The statement (i) is the same as in Lemma 3.1, (d) in Phillips and Durlauf (1986).
For the convergence in (ii), set

1

T

T´1
ÿ

t“1

Z1,tZ
1
2,t`1 “

8
ÿ

j“0

1

T

T´1
ÿ

t“1

Z1,tε
1
t´pj´1q

rL1j “:
8
ÿ

j“0

YjpT q.

Then, by Theorem 4.2 in Billingsley (1986), it is enough to prove

k
ÿ

j“0

YjpT q
d
Ñ

1

2
pΣ

1
2
ε Zp1qZp1q

1Σ
1
2
ε ` Σεq

k
ÿ

j“0

rL1j (A.14)

for each k ě 1 and
8
ÿ

j“k`1

YjpT q “ opp1q, as T Ñ8, k Ñ8. (A.15)

The convergence in (A.14) is a consequence of

k
ÿ

j“0

YjpT q “
k
ÿ

j“0

1

T

T´1
ÿ

t“1

´

Z1,t´jε
1
t´pj´1q `

t
ÿ

i“t´j`1

εiε
1
t´pj´1q

¯

rL1j

“

k
ÿ

j“0

´ 1

T

T´1
ÿ

t“1

Z1,t´jε
1
t´pj´1q `

j´1
ÿ

l“0

1

T

T´1
ÿ

t“1

εt´lε
1
t´pj´1q

¯

rL1j

“

k
ÿ

j“0

´ 1

T

T´1´j
ÿ

t“1´j

Z1,tε
1
t`1 ` Σε

¯

rL1j ` opp1q (A.16)
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“

´ 1

T

T´1
ÿ

t“1

Z1,tε
1
t`1 ` Σε

¯

k
ÿ

j“0

rL1j ` opp1q (A.17)

d
Ñ

1

2
pΣ

1
2
ε Zp1qZp1q

1Σ
1
2
ε ` Σεq

k
ÿ

j“0

rL1j . (A.18)

The equality (A.16) follows since tεjujPZ is stationary and ergodic, and so is any transformation of
εj . Indeed, by the ergodic theorem and since E εt´lε

1
t´pj´1q “ Σε for l “ j ´ 1 and 0 otherwise,

1

T

T´1
ÿ

t“1

j´1
ÿ

l“0

εt´lε
1
t´pj´1q

rL1j “ E
´

j´1
ÿ

l“0

εt´lε
1
t´pj´1q

rL1j

¯

` opp1q “ Σε
rL1j ` opp1q, (A.19)

see Theorem 2 in Hannan (1970), p. 203. For the equality (A.17) note that

1

T

T´1´j
ÿ

t“1´j

Z1,tε
1
t`1 “

1

T

T´1
ÿ

t“1

Z1,tε
1
t`1 ` opp1q, (A.20)

since

E }
1

T

s
ÿ

t“r

Z1,tε
1
t`1}

2
F “

1

T 2

s
ÿ

t1,t2“r

t1
ÿ

i1“1

t2
ÿ

i2“1

E trpεt1`1ε
1
i1εi2ε

1
t2`1q

“
1

T 2

s
ÿ

t“r

tpE }ε0}
2q2 “ op1q,

(A.21)

where either r “ 1 ´ j and s “ 0 or r “ T ´ j and s “ T ´ 1. The convergence in (A.18) is a
consequence of (i).

The equality (A.15) can be proven by

E }
8
ÿ

j“k`1

YjpT q}
2
F

“

8
ÿ

j1,j2“k`1

1

T 2

T´1
ÿ

t1,t2“1

t1
ÿ

i1“1

t2
ÿ

i2“1

E tr
´

rLj1εt1´pj1´1qε
1
i1εi2ε

1
t2´pj2´1q

rL1j2

¯

“

8
ÿ

j1,j2“k`1

1

T 2

T´j1
ÿ

l1“2´j1

T´j2
ÿ

l2“2´j2

l1`j1´1
ÿ

i1“1

l2`j2´1
ÿ

i2“1

tr
´

Epεl1ε
1
i1εi2ε

1
l2q

rL1j2
rLj1

¯

“

T`1
ÿ

j1,j2“k`1

1

T 2

T´m
ÿ

l“2´m

trpΣ˚rL1j2
rLj1q ` 2

T`1
ÿ

j1,j2“k`1

1

T 2

T´j1
ÿ

l1“2´j1

T´j2
ÿ

l2“2´j2

trpΣ2
ε
rL1j2

rLj1q

`

8
ÿ

j1,j2“k`1

1

T 2

T´m
ÿ

l“2´m

l`m´1
ÿ

i“1

E }ε0}
2 trpΣε

rL1j2
rLj1q

“

T`1
ÿ

j1,j2“k`1

1

T 2
pT ´ 1`m´mqptrpΣ˚rL1j2

rLj1q ` E }ε0}
2 trpΣε

rL1j2
rLj1qq

` 2
T`1
ÿ

j1,j2“k`1

1

T 2
pT ´ 1q2 trpΣ2

ε
rL1j2

rLj1q
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ď 2
T`1
ÿ

j1,j2“k`1

1

T
| trpΣ˚rL1j2

rLj1q ` E }ε0}
2 trpΣε

rL1j2
rLj1q| ` 2

T`1
ÿ

j1,j2“k`1

| trpΣ2
ε
rL1j2

rLj1q| Ñ 0,

as T Ñ 8 and k Ñ 8, since
ř8
j“0 }

rLj}F ă 8. Thereby, we used the notation m “ mintj1, j2u,
m “ maxtj1, j2u, Σ˚ :“ Epε0ε

1
0ε0ε

1
0q and the fact that

Epεl1ε
1
i1εi2ε

1
l2q “

$

’

’

’

’

&

’

’

’

’

%

Σ˚, i1 “ i2 “ l1 “ l2,

Σ2
ε, i1 “ l1 ‰ i2 “ l2,

Σ2
ε, i1 “ l2 ‰ i2 “ l1,

E }ε0}
2Σε, i1 “ i2 ‰ l1 “ l2.

The statement (iii) is proven in Lemma 3.1, (a) in Phillips and Durlauf (1986), p. 210. The last
point (iv) gives the weak law of large numbers for the sample autocovariances of linear processes
and is proven in Hannan (1970), p. 210.

Proof of Proposition 4.1: By Theorem 2 in Samworth et al. (2014), there is an orthogonal matrix
pO P Rdˆd, such that

}pV pO ´ V }F ď 2
3
2

}xMS ´M}F
mintλi´1 ´ λi, λi`d´1 ´ λi`du

. (A.22)

Set τ “ εmintλi´1´λi, λi`d´1´λi`du2
´ 3

2 . Then, by applying (A.22) and Chebyshev’s inequality,
we get for all ε ą 0,

Pp}pV pO ´ V }F ě εq ď Pp}xMS ´M}F ě τq “ P
´´

p
ÿ

i,j“1

|e1ip
xMS ´Mqej |

2
¯

1
2
ě τ

¯

ď
1

τ2
E

p
ÿ

i,j“1

|e1ip
xMS ´Mqej |

2

“
1

τ2

p
ÿ

i,j“1

pvecpeie
1
jqq
1
´ 1

T
Np

rCN 1p ` o
´ 1

T

¯¯

vecpeie
1
jq

“
1

τ2

1

T
ptrpN2

p
rCq ` p2op1qq,

where teiui“1,...,p are p-dimensional unit vectors and the second to last equality is a consequence of

Lemma A.1 with rC as in (A.7).
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