Technical appendix for “Local and global rank
tests for multivariate varying-coeflicient models”

Stephen G. Donald Natércia Fortuna
University of Texas at Austin CEF.UP, Universidade do Porto

Vladas Pipiras
University of North Carolina at Chapel Hill

January 5, 2010

We gather here a number of proofs that were omitted from the article “Local and global
rank tests for multivariate varying-coefficient models”. The notation follows that of the
article. References to the article will be made by adding square brackets, for example,
Theorem [3.1] will refer to Theorem 3.1 in the article.

The proof of Theorem [3.1] can be found in Section 1 below. The proofs for Appendix
[A] are in Section 2 below. Section 3 contains a number of auxiliary results used in this

technical appendix and the article itself.

1 Proof of Theorem [3.1]

It is enough to prove the theorem for dy = 0, that is, O(2) = 0(z), V(z) = ¢¥(2), Q(z) =
w(z) = (¥(2)7' @ X)||K||3 and similar expressions with the hats. Observe that

B(2) = 0(2) + (As(2) + Aa(2)) (=), (1.1)

A=) = = S0(Z) — 0(=))o(X)o(X) Kn(z — Z2), Bolz) = ;VZI Uno(Xs) Kn(z — 7).

=1

To prove the theorem, it is enough to show that

O(z) - 9(z) (1.2)



Ai(z) = op((NRH)12), (1.3)
(NRDY2A0(z) 5 N(0,wo(z)), (1.4)
LN,y (1.5)

where wy(z) = (¥(2) ® ¥)||K]|3. The convergence (1.5) follows from Proposition 3.5 below.

The convergence (1.2) is standard. Letting M? = MM’ for a matrix M, consider

E((2) = ¥(2))* = Bd(2)" = EQ(2)9(2) = »(2)Ed(z) +v(2)*,

Since E@E(z) = Bv(Xi)v(Xy) Ki(z — Z;) = EQ(Zi) Ki(2 — Zi) = [, d(2)p(2i) Kin(z — Z;)d;,
by applying Proposition 3.1, (i), and using the assumptions on ¢(z) and p(z), we obtain that
Eip(2) = ¢(2)p(2) + O(h*) = 1p(2) +O(h?). As for Ev)(2)?, by using independence of (X;, Z;)
and (X, Z;) for ¢ # j, we have

E(z)? = ||]\[/'(}l|q2E ((U(Xi)U(Xi)lszh(z — Zi)) + ]V];l(EU(XZ-)U(XZ.)’Kh(Z - Zi))z
“]\[/v(}ll;Eng( )K2 h(Z — 7 ) + ]V]\_fl(EQﬁ(ZZ)Kh(Z _ Zz)>2

By using Proposition 3.1, (i), the first term above is of the order O((Nh4)~!). The order of
the second term is that of (E¢(2))? = ¥(2)? + O(h*). Combining all asymptotic relations
above yields 1(z) = (z) + O,(h* + (Nh)~1/2),

Similarly as above,

B0 = W p(0(2) — 0(:)0u(2)0(2) - 81 an (= - 20)

A Bz - ooz - 7))

= o((Nh)™) + O(h*) = o((Nh")71).

To show (1.4), write (Nh?%)/2vec(Ay(z)) = N™V23N ey, with &y, = h?2(v(X;) ®
1)U K(z — Z;). By the Cramér-Wold theorem, we need to show that

\/—ZUNZ—>N(O Wl( )) (1-6)

where ny; = Néys, A € IR™ \ {0} is an arbitrary vector and w;(z) = Nwy(2)A. By using

the Lyapunov’s version of Central Limit Theorem for triangular arrays and since Eny,; = 0,
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this follows from

En?\fl
—— — 0, 1.7
N(EE ) (.7
E(nwa)? — w1 (2). (1.8)

The convergence (1.8) follows from E{%, — wo(z). For this, observe that EEY, =
IKZE((v(X) ® Ln)Ui)* Kop(2 = Zi) = | K[3E(6(Z:) @ B) Ko (2 — Z;) = wo(z) + O(h?). For
the convergence (1.7), observe that Eny, = || K|;h 9E(N (0(X;) ® L) UiN) ! Kyn(z — Z;) =
O(h™?) by using Proposition 3.1, (i). By using (1.8), we deduce the convergence (1.7).

2 Proofs for Appendix [A]

We shall write
£ = Opsup(an)
for £ = €(2) when ay! sup [£(2)] = O,(1).
PROOF OF LEMMA [A.1]: Let T'= Nh? As on p. 173 of Robin and Smith (2000), \; satisfy

0= det(307'9 = A) = det((C TV2C) (g5 = AS)(C TVC))

< 6/@@571” - Xii)é 6”@%271?/ - XiA) 12c )
= det ~ i <

TV2C(gd'g — N TC'(go~'g — AE)C

)C
By using the relation det((A C; B D)) = det(A)det(D — BA™'C), we further obtain that

o~

0 = det(S) det (W — TAV ), (2.1)
where § = C' (g9 — \2)C,
VT = 'S0+ NC'SC ST OSC - C'SC ST Clg e — Clgy g e ST C'SC

and
W =TC'g'§C —TC'g'§C 5 C'qy"gC. (2.2)
By using Propositions 3.4-3.6 and the smoothness of C' by Proposition 3.3, observe that
S=C'gvg'C+ Opap ((NB/In N)71/2). (2.3)
As in the proof of Lemma A.1 of Robin and Smith (2000), observe also that
é/g = dlag<)\}){27 s 7>\:r{31+1) bj;? (24)

3



where Dy! = (D, D)’ is the inverse of Dy with a nx (n—1[) matrix D,. Since D'4p~'D, = I,,_,
by using DDy = I,,, we obtain from (2.3) and (2.4) that

S = diag(\m, - Am-1+1) + Opaup (NR?/In N) /2. (2.5)

~

Relation (2.5) shows that, asymptotically, det(S) > 0. Hence, in view of (2.1), we
may suppose without loss of generality that det(W — TX,;‘A/_l) = 0, that is, T \: are the
eigenvalues of the matrix WV. The matrix V is symmetric and its eigenvalues are positive
asymptotically because 1% —, C'2XC. Therefore, we may suppose that V is positive definite,
and that T'\; are the eigenvalues of VY/2WV1/2. Since this matrix is symmetric, applying
the Wielandt-Hoffman theorem (Golub and Van Loan (1996), Stewart and Sun (1990)), we
obtain that

sup |TA; — 7] < sup mz_l TN —T7;|* < sup \91/21’47&71/2—TC/(g—g)DD’(g—g)/cf. (2.6)
i=1
Finally, we bound the right-hand side of (2.6) by examining the terms of the matrix w
in (2.2). By using C"g = 0 and Proposition 3.4, we have
TC'g)™'§'C =TC'(G— g "G — 9)'C + Opanp (NB/ 1n® N)71/2). (2.7)
Similarly, by using (2.4), (2.5) and the relation ¢! D, = D, we obtain that
TC'g g CS ' C'g g C = TC'(§ — g)DD'(G — 9)'C + Opanp (N1?/In® N)7V/2) . (2.8)
By using ¢! — DD’ = DD', we conclude from (2.7) and (2.8) that

W =TC'(§ - g)DD'(§ — g)C + Opaup (Nh?/In* N)71/2) . (2.9)

By using Proposition 3.5 and the fact C'¥C = 1I,,_;, we have vz = I +
Opsup((NR?/In N)71/2). Hence, in view of (2.9), the right-hand side of (2.6) is
Opsup((NR?/In® N)~1). This implies the desired result. O

PrROOF OF LEMMA [A.2]: Applying the Poincaré separation theorem (Magnus and
Neudecker (1999), p. 209, or Rao (1973), p. 65), we have 7; < (;, where ¢ are the or-
dered eigenvalues of the matrix C](g — g)DD'(g — g)'Cy. These are also the eigenvalues of
the matrix D'(g — g)'C1C7(g — g)D. Applying the Poincaré separation theorem again, we
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further obtain that 7; < &, where & are the eigenvalues of D} (j§ — ¢)'C1C}(§ — g)D;. These

are also the eigenvalues of the matrix C{gD,D|g’'C,. O
PROOF OF LEMMA [A.3]: Write Sy (1) = | K|ZN"' N, 6, where
Bi= [ e Di(X)u(X) DY er{ CLUUIC K= = Zi)de.
Observe that, since Etr{C{U;U/C,} = tr{C1XC,} = tr{l,_} = m —r and tr{D¢D,} =
n —r using D{Y Dy = I,,_,, we have
Ef = (m—r) /H Etr{D,¢(Z) Dy} Ko (2 — Zi)dz
= (m—r) /H(tr{D;le} +O(h)dz = (m —1)(n —r)|H| + O(h?),  (2.10)

where we also used Proposition 3.1, (i), below and the assumption on ¢. Similarly, using

the notation A% = AA’,
EB} = /H2 €(21,22) Eda p(Z;, 21, 20) Ko (24 — Z;) Ko (20 — Z;)dz1d s,
where ¢2,D<Zi> 21, ZQ) = E(tl‘{(Dl(ZQ)IU(Xi)U(Xi)/Dl (Zl))2}|Zz = Zz‘), E(Zl, ZQ) =
Etr{(C1(2)'U;U/C1(21))*}. By using Proposition 3.1, (i4) and (4ii), and the assumption
on ¢9, we further get that
Ep; = /H2 €(z1, 22) (P2, (21, 21, 22)p(21) Kon (21 — 22) + 0( K1 (21 — 22)))dz1d 2z
= /H €(21, 21)P2,0(21, 21, 21)p(21)dz1 + o(1). (2.11)

The desired result follows from (2.10), (2.11) and Sy () = || K|2EB; + O,((N~'EB)Y/?).
O

PROOF OF LEMMA [A.4]: Write SQ;;{;}’Q(T) = Yi<jaij = Ay as a second order U-statistic,
where
ZhQ/Q !/ / ! !
Qi = N Htr{Dlv(Xi)v(Xj) Dl}tr{ClUinCl}Kh(z — Zl)Kh(Z — Zj)dz

By the Central Limit Theorem for U-statistics found in Proposition 3.2 of de Jong (1987),
the desired results holds if (1) Var(Ay) — o2 = 2|H|||K||3(m—7r)(n—7r) and (2) Gx; = o(1)

for : = 1,2 and 4, where

Gny = Z Ea?y Gnao = Z (Ea?ja?k + Eazﬂ?k + EaZiazj)a

j
i<j i<j<k
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GN,4 = Z (Eaijaikaljalk + Eaijailakjakl + Eaikailajkajl). (212)
i<j<k<l

To show the part (1), observe that

4RI N(N — 1 _— _—
Var(AN) = ]\],2(2) /’)—[2 Etr{01(22> Ujchl(Zl)Cl(Zl) UZUlcl(Zz)}

~tr{D1(22)"v(X;)v(X;) D1(21) D1(21) v(X:)v(Xi) Dy (22) }-

. Kh(Zl — Zi)Kh(Zg — ZZ')Kh(Zl — Zj)Kh(ZQ — Zj)dzleQ
 2R9(N — 1)
B N

where €1 (21, 22) = tr{(C1(22)'C1(21))?}, 2,1(2i, 21, 22) = D1(22)'P2(21) D1(21) and we used

/H2 e1(z1, )00 {(Ebo1(Zi, 21, 20) K (21 — Z3) Ki(22 — Z;))* }dz1d 2o,

using Proposition 3.1, (ii) and (i), we further get

Var(Ay) = th(]]\fv—l) /H2 €1(21, 20)tr{ (o1 (21, 21, 22)p(21) K1 (21 — 22)

+o(K1n(21 — 22)))?}d21dzg
=2 [ (o1, 200221, 21,2000 R s +0(1)
= 2(m —r)(n —)|[K|2[H] + o(1),
where we also used the facts €;(21,21) = tr{l,—.} = (m —r) and ¢21(21, 21, 21)p(21) = Ly
For the part (2), consider first Gy in (2.12). Observe that

16h% N

Gor = S g [ B T Dy () o X005 Dua)

. tI‘{Cl(Zk)/UZ'U],-Cl(Zk)}Kh(Zk — ZZ)Kh(Zk — Z])dzk

By Proposition 3.1, (i77) and (iv) (see also Remark 3.1), G behaves as (up to a constant)

B2 , _
Nz EtriDi(Z) v(X:)v(X5) Di(Z:) Y o { CL(Z:) U U O\ Za) Y (K n(Zs — Z5)) Vi ziemt, z,em)
K4 —
= UVQ}!;‘ Etr{ Dy (Z;)v(Xi)v(X;) D1 (Z:) Yt { C\(Z:) UiU;C1(Zi) Y K an(Zi — Zj) L zerz e



since Nh? — oo. Turning now to Gyo in (2.12), consider, for example, Gnao;1 =

Dicj<k an 7. Observe that

16h% N(N — 1)(N — 2)
N4 6

e~ /H4 EKy(21 — Zi)Kn(za — Zi) Kn(21 — Z;) K (22 — Z5):

T tr{D1(2m) v(X;)0(X;) D1 (zm) }12{C1 (2m) UiU;C1 (2m) }-

m=1
4
T tr{D1(zm) v(Xi)v(Xk) D1 (2m) }er{C1 (2) U; U Ch (2 }+
=3
. Kh(Zg — ZZ)K}L(Z4 — ZZ)Kh(Zg — Zk)Kh(Z4 — Zk)d21d22d23d24.

Similarly to the case of Gy above, Gy 21 behaves as (up to a constant)

};\:Etr{Dl( i) v(Xi)v(X;) Di(Zi)}*-

tr{C1(Z;) UU;C\(Zi) Y (K n(Zi — Z;))(Kn(Zi — Zi))* Vi zier.z,em,zoem

_ K ||2Etr{D1( Z) v(Xi)o(X;) Di(Z:) 0 {C1(Z:) TiUjCa (Z) } -

Kon(Zi — Z))Kon(Zi — Zi) L zem,z,em,z0emy = O (i,) = o(1).
Finally, for G4 in (2.12), consider, for example, Gy a1 := X< jcre; Eaijagaan. Observe
that
16h21 N(N — 1)(N —
N4 24

2) (N —3
G(NA:,I - )( ) /H4 F4(Zi7Zj7Zl7Zk7Z1722a23aZ4)'
. Kh(zl — Zi)Kh(Zg - Zz')Kh(Zl — Zj)Kh(Zg — Z])
. Kh(23 — Zl)Kh(Z4 — Zl)Kh(Zg — Zk)Kh<Z4 — Zk)d21d22d23d24,
where

Fy(zi, 25, 21, 25y 21, 22, 23, 24) = E(%,zx(zl, Xi, Xj)ea(z1, Uy, Uj)ba a(22, Xy Xip)ea(22, Uy, Uy)-

(28, X1, X;)ea(zs, Un, U)oz, Xo, Xiea(za, Un Up) Zi = 21, 2y = 25, 2 = 2, 2 = )

with ¥ 4(2, 21, x2) = tr{D1(2)'v(z1)v(z2) D1(2)}, €4(z, ur, uz) = tr{C1(z) uyusCi(2)}. Using

Proposition 3.1, (i¢), one can argue that Gy 41 behaves as (up to a constant)
th /7'{4 F4<z17 R1y R4y R4y R1y 225 23, Z4)p(21)2p(24)2'
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K21 — 22)Kp(21 — 23) Kn(z3 — 24) K (22 — 24)dz1dzodz3dzy

and hence, by Proposition 3.1, (iv), as

h /H2 Fy(22, 22, 23, 23, 22, 22, 23, 23)p(22)°p(23) (K (22 — 23))dz0d 23

= hq”fng /’}—(2 F4(ZQ, 29,23, 23, 292,29, 23, 23)?27}1(22 — Zg)dZQng = O(hq) = 0(1) O

For the next lemma, we recall that the goal is to prove that
Sa.gin(1) = O(h?) + 0,(N7V2), Sy s(r) = 0,(N~V?), (2.13)

§4vglb(r) = O(th+s) + OP( V N h2a+2s) + Op(m>’ (2.14)

Soqi(r) = Op (VNI + 0, (V). (2.15)

PROOF OF LEMMA [A.5]: For the proof of the first relation in (2.13), write S5 (1) =
IK[3N"' L, Bi, where

B = /H e {C1O(Z)v(X,)o(X,) Dy Dyo(X (X, 0(Z,) C Y Ko p (= — Z)de.

In view of Ssu(r) = |K|2EB + O,(N"'EB2)'/?), we examine next Ef; and ES2.
With F(z;,2) = Etr{C10(Z)v(X;)v(X;) D1 Djv(X;)v(X;)0(Z;)Ci}|Z; = =), observe
that Ef;, = [, EF(Z;,2)Kan(z — Z;)dz. Using Proposition 3.1, (i), below, Ef; =
Jw(F(z,2)p(2) + O(h?))dz = O(h?), since F(z,z) = 0 using C(2)'6(z) = 0. Similarly,
EB? = fyp EF(Zi, 21, 23) Kon(21 — Zi)Kap(2s — Z:)dz1dz with

F(zi,21,20) = E(tr{cl(Zl)le(Zi)U(Xi)U(Xi)/Dl(Zl)Dl(21)/U(X1)U(Xi)/9(zi)/01(21)}'

. tr{Cl(ZQ)IQ(ZQ)/U(XZ')/U<X1'>/D1(ZQ)Dl (ZQ)/U(XZ'>U<X1'>/0(22>/01 (ZQ)}|Zl = Zi)

and, using Proposition 3.1, (7) and (i1i), E8? = [2 F(21, 21, 20) Ko p(21 — 22)d21d20 4 0(1) =
o(1), since F'(z1,21,21) = 0. The proof of the second relation in (2.13) is similar and easier
since E(UZ’X“ Zz) = 0.

Write 54,911,(7“) = 23,.; a4 as a second order U-statistic with

Q5 = ?\;AtI‘{C{Q(ZZ)U(XZ)U(XZ)/DlD,l’U(X])U(XJ)/Q(Z])lcl}Kh(Z - ZZ)K}L(Z - Zj)dz



To show (2.14), we use Proposition 3.2 below. With W, = (Z;,X;), we need to examine
Eaij, E(E(aw|WZ)2) and Ea?j.
Observe that Fa;; = & [,  EF(Z;, Zj, 2)Ky(z — Z;)Kp,(z — Zj)dz with

F(Zi, Zj, Z) = E(tr{C{Q(Z,)U(XZ)U(XZ)’DlD'lv(XJ)U(Xj)'Q(Z])'Cl}|Zl = Z;, Zj = Zj).
Using Proposition 3.1, (i), we obtain that

Fa;; = ?\; (/H F(z,2,2)p(2)*dz + O(hs)) =0 (h;s> : (2.16)

since F'(z, z,z) = 0. Similarly, note that
hq !/ !/ /
E(aii|Wi) = + Atf{Cﬁ(Zi)v(Xz’)v(Xi) Dy Dy (Bv(X;)0(X;)'0(Z;) Kn(z — Z;))C1}-

and, using Proposition 3.1, (iz) and (i),

h2q / / /
E(E(a;|W:)*) = e /H2 Etr{C1(21)'0(Z)v(Xi)v(X;) D1 (21) D1(21) O(h*) C1 (z1) }-
tr{01(ZQ)’Q(ZZ)U(Xz)U<Xl)/D1(ZQ)Dl(ZQ),O(hS)Cl(ZQ)}
h2q+2$
Furthermore,
2 th
Eaij = ﬁ /7—[2 EF(Z“ Zj, 21, Z2)Kh(21 — Zl)Kh(ZQ — Zl)Kh(Zl — Zj)Kh(ZQ — Zj)dzleQ,
where

F(zi, 2,21, 22) = E(U"{Cl(Zl)le(Zi)U(Xi)U(Xi)/Dl(Zl)Dl(21)”0(Xj)’U(Xj)/Q(Zj)fcl(zl)}‘

tr{C1(22)'0(Z;)v(X;)v(X;) D1 (22) D (22) v(X))v(X;) 0(Z;) Cr(22) Y2 = 21, Z; = Zj)-
Using Proposition 3.1, (i) and (i), we obtain that Ea?; behaves as

h2
N2

h?

/H? F(z1, 21,21, 22)p(21)2(Kn(21 — 2))*dzidze = 0 <N2> : (2.18)

The relation (2.14) now follows from (2.16)-(2.18) and Proposition 3.2. The relation (2.15)

can be proved in a similar and easier way. O



3 Auxiliary results

The following localization properties of kernel functions were used many times above. The
kernel K below is as in Assumption 1 of Section [2], and is of order s. We also use the

notation K,(z), K(z), H. and H of that section.

Proposition 3.1 The following assertions hold:

(1) For a function g : H, — IR and a point zy in the interior of H,, we have

/ 9(2)Kp(z — z0)dz = g(z9) + r(h). (3.1)

z

Here, (i.1) r(h) = O(h®) if g is s times continuously differentiable in a neighborhood
of zo; (1.2) r(h) = O(h®) uniformly in H if g is s times continuously differentiable on
H.; (i.3) r(h) = o(1) if g is continuous at zg and s = 1; (i.4) r(h) = o(1) uniformly in

H if g is continuous on H, and s = 1.

(ii) For a function g : H, — IR, we have
/H 9(2)Kp(z — 21) K (2 — 29)dz = g(21) Kn(21 — 22) + r(h). (3.2)

Here, (7i.1) 7(h) = O(hK (21 — 22)) uniformly over zy,2, € H if g is continuously
differentiable on H, and s = 1; (11.2) r(h) = o(K1 x(21 — 22)) uniformly over z1, 22 € H

if g is continuous on 'H, and s = 1.

(ii1) Let Hy denote either H or H,, and suppose s = 1. For a continuous function g :

Ho x Ho — IR, we have

/H2 9(z1, 20) Kp(21 — 20)dz1dzg = / g(z1,21)dz + o(1). (3.3)

0 Ho

(tv) Let Ho denote either H or H,, and suppose s = 1. For a continuous function g :

HZ x H — R, we have

Js

(/7{9(21, 29, 23) K (21 — 20) Kp (21 — z;»,)dzl)szsz

2
0

= /H2 9(22, 20, 23) K1 (20 — 23)dzadz3 + 0(1). (3.4)
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PROOF: The statements (i.1) and (i.2) follow easily by using Taylor’s expansions. The parts
(2.3) and (i.4) are proved, for example, in Pagan and Ullah (1999), p. 362, even under weaker
assumptions on the kernel K.

The statement (4i.1) also follows easily by using Taylor’s expansion. (Here, K is under-
stood as the convolution of K;.) For the part (ii.2), observe that, for z1, zo € H and small
enough A,

’/ 2)Kp(z — 21)Kn(z — 22)dz — g(21) K (21 — 22)

‘/ : —9(21))Kn(z — 21) Kp(2 — 22)dz

< /[A7A1q|g(zl+wh)—9(21)||K w)||K (w = 25 |dw

<C  sup g(z+u) = g(20)[Kin(z — ),
z1€H,|u|<Ah

where supp{ K} C [—A, A]7. The supremum term above converges to zero as h — 0 by the
uniform continuity of g on compact supports.

To show (iii), suppose that Ho = H, and, for simplicity, that ¢ = 1, H, = [0, 1] and that
the support of K is [—1,1]. Write

v/HQ g(’zl, ZQ)Kh(Zl - ZQ)ledZQ

1-h
</ / /1 h/ / /) 21’22 Kh Zl_ZQ)dzleQ_ [1+[2+[3

As for part (), one can easily show that

1—h 1
Iy = /h 9(z1, 21)dz1 + o(1) = /0 9(z1, 21)dz1 + o(1)

(note here that, for z; € [h, 1 — h], the support of K},(z; —-) is in [0, 1] and hence f; K}, (z, —

29)dzo = 1). Furthermore, for Iy, for example, note that
1 ph7t
I = h/ / glhwn, hw) K (w1 — ws)dwidws = O(h).
0 Jo

The part (iv) can be proved in a similar way. For example, with ¢ =1, Hy = H = [0, 1]

and K having the support [—1, 1], one would consider
1 01 1
/0 /0 /o 9(z1, 22, 23) Ki (21 — 22) K (21 — 23)d21dzadz;
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1—h 1—h 1
= /h dZQ/h dzs (/0 9(z1, 20, 23) Kp(21 — 22) K (21 — z;;)dzl) + R(h).

The first term behaves asymptotically as fol fol g(22, 29, 23) K1,(22 — 23)d29dz3, and the second

term R(h) is asymptotically negligible. O

Remark 3.1 When a function g depends on other variables w, for example, g(z) replaced
by g(w,z) in (i), Proposition 3.1 obviously applies to such g for a fixed value of w. But
the results of Proposition 3.1 also remain valid uniformly for w in a compact subset H,,,
as long as the assumptions involve obvious modifications. For example, (i.2) would assume

that g(w, z) has its s order partial derivative with respect to z continuous on H,, x H..

We also used the following result, borrowed from Fortuna (2008), Lemma C.1, p. 181. It

concerns the limiting behavior of a second order U-statistic:

Uv= > an(Wi,Wy), (3.5)
1<i<j<N
where W;, i = 1,..., N, are i.i.d. random vectors in IR? and ay : R x R — R is a

symmetric kernel (that is, ay(z,y) = an(y, z)).

Proposition 3.2 Let Uy be a second order U-statistic defined by (3.5). Then,

Uy = MEaN(Wi, W;)+ 0, <\/N3E(E(aN(Wi, W;)|[Wi)?) + \/NQEGN<W1', Wj)2> .

2
(3.6)

The next four propositions were used in the proof of global rank tests.
Proposition 3.3 Under Assumptions G4-5, the matrices Cy and Dy can be chosen analytic.

PROOF: By Assumptions G4 and G5, the matrix X ~'/2¢gy)~1/? is analytic. By using the
analytic Singular Value Decomposition (Bunse-Gerstner et al. (1991)), there are mxm, mxn
and n x n analytic matrices U, T and V, respectively, such that ¥=1/2¢y)=/2 = UTV’, where
T = diag(ty, ..., tx) with k = min(m,n), t; > ... > t;, are the singular values, and orthogonal
matrices U and V consist of the eigenvectors of X ~1/2gyy=1¢’S"Y2 and ¢p~1/2¢'S 1 gyp=1/2,
respectively. Now take Cy = X'V2U. Then, C, is analytic, satisfies gy~ 1¢’S1Cy = CyT?

and CyX~'Cy = I,,. The case of the matrix Dy can be considered similarly. O
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Proposition 3.4 Under Assumptions 1-3, L{-5, and N'"?/*h?/In N — oo, Nhi+?s — 0,

we have
sup|(U(2))" = V()| = Op (NB1/ I N)7H2) - k= =11, (3.7)
and
sup 0(2) = 0(2)| = O, ((Nh?/In N)~*/2). (3.8)

PROOF: To prove (3.7), we consider only the case k = 1. Under the assumptions of the
proposition and by using Lemma B.1 in Newey (1994) (see also Lemma 1 in Fan and Zhang
(1999)), we have

sup [i() — ED ()| = O, ((NhT/1n N) /%)

z€H

By using Proposition 3.1, (i), above and the assumptions,

sup | B (2) — ()] = O (h?).

z€H
This implies (3.7) with £ = 1. Relation (3.8) follows similarly by using (3.7). O
Proposition 3.5 Under the assumptions of Proposition 3.4 above, we have

S % =0,((Nh/InN)"2).

Proor: Write

- 1 X 1 X . .
Y = — Y UUlzerny + > (0(Z;) — 0(Z;))v(X:)v(X,) (0(Z:) — 0(Z:)) 1 zierqy
Npw i Npw i
1 N / n / 1 al n /
+ — > U(X:)'(0(Z:) — 0(Z:) Lizery + —— > _(0(Z:) — 0(Z;))v(Xi) U1 z,e10)-
NpH i=1 NpH i=1

The first term on the right-hand side is ¥+ O,(N~/2). By using Proposition 3.4, the second
term is O,((Nh?/In N)7!) since N"L SN | |o(X;)v(X;)'| = O,(1). Similarly, the third and
fourth terms are O,((Nh?/In N)~Y/2) since N"' SN | |o(X;)'U;| = O,(1). O

Proposition 3.6 Let I(z) = rk{I'(2)}. Under the assumptions of Proposition 3.4 above, for
1=1,...,m,

sup Xi(z) = Xi(2)] = O, (Nh?/In N)~H/2)

13



PROOF: Observe by the Wielandt-Hoffman theorem (Golub and Van Loan (1996), Stewart
and Sun (1990)) that

2

Y

which is O,((Nh?/In N)~') by Propositions 3.4 and 3.5. O
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