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A Additional figures for Section 6

A.1 Figures for Section 6.1
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Figure 1: Model 1: Histograms of the estimates of d for the indicated sample sizes for the two

competing methods: DSSA (Sundararajan and Pourahmadi (2018)) and VC (proposed method).

The true value is d = 1.
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Figure 2: Model 2: Histograms of the estimates of d for the indicated sample sizes for the two

competing methods: DSSA and VC (proposed method). The true value is d = 2.
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Figure 3: Model 3: Histograms of the estimates of d for the indicated sample sizes for the two

competing methods: DSSA and VC (proposed method). The true value is d = 2.
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Figure 4: Model 4: Histograms of the estimates of d for the indicated sample sizes for the two

competing methods: DSSA and VC (proposed method). The true value is d = 3. The value of ρ is

set to 0.5.

A.2 Figures for Section 6.2
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Figure 5: Model 2 - Top: Plot of D1(B̂1(u)) against u for the competing methods DSSA and VC

and several sample sizes. VC (avg.) in triangles in squares and DSSA in solid circles. Bottom:

Analogous plot but with measure D2(B̂1(u)) against u.
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Figure 6: Model 3 - Top: Plot of D1(B̂1(u)) against u for the competing methods DSSA and VC

and several sample sizes. VC (avg.) in triangles, VC (min.) in squares and DSSA in solid circles.

Bottom: Analogous plot but with measure D2(B̂1(u)) against u.
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Figure 7: Model 4 - Top: Plot of D1(B̂1(u)) against u for the competing methods DSSA and VC

and several sample sizes. VC (avg.) in triangles, VC (min.) in squares and DSSA in solid circles.

Bottom: Analogous plot but with measure D2(B̂1(u)) against u.
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B Additional figures and tables for Section 7
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Figure 8: Histogram of the dimension estimates d by the two competing methods based on the 144

trials.

d S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg

1
DSSA 51.22 54.86 56.25 58.33 49.03 45.13 54.16 51.11 51.38 52.38

VC 50 49.31 50.69 46.52 52.08 54.16 50.69 46.15 54.86 50.49

2
DSSA 58.37 57.63 54.86 61.11 54.16 52.08 52.77 56.45 52.78 55.57

VC 53.14 59.72 48.61 57.63 55.56 52.77 54.17 45.05 50.69 53.10

3
DSSA 60.48 58.33 59.02 55.56 59.33 56.20 62.50 64.39 56.94 59.19

VC 60.13 61.11 47.22 56.94 57.63 55.56 61.81 54.54 54.16 56.57

4
DSSA 60.17 62.50 56.25 66.67 62.50 55.56 65.27 66.28 55.56 61.19

VC 58.04 60.41 65.97 66.67 64.58 57.63 66.67 59.44 56.94 61.82

Table 1: Out-of-sample classification accuracy (in %) for the 9 subjects S1-S9 for the two indicated

methods.
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Figure 9: p = 22. Histogram of the stationary subspace dimension estimates based for VC method

based on the 144 trials.
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d Method S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg

7
VC 74.12 66.67 70.83 73.51 73.61 70.83 74.30 68.53 69.44 71.32

DSSA 69.67 67.57 70.00 64.52 60.48 63.70 66.67 68.30 68.55 66.60

9
VC 80.41 75 72.22 77.08 81.25 74.30 77.08 71.32 77.08 76.19

DSSA 71.52 69.96 77.90 77.48 65.50 70.55 71.41 70.38 69.80 71.61

11
VC 87.40 84.72 74.30 81.94 88.19 81.25 82.63 81.25 81.25 82.55

DSSA 75.78 69.97 72.92 75.96 69.58 71.95 68.34 71.33 73.31 72.12

13
VC 89.50 90.97 85.41 88.19 89.58 88.19 90.27 84.72 84.72 87.95

DSSA 79.86 70.98 80.56 78.24 70.83 77.62 73.55 78.38 74.72 76.08

Table 2: Out-of-sample classification accuracy (in %) for the 9 subjects S1-S9 corresponding to d =

7, 9, 11, and 13 for the VC and DSSA methods with p = 22.

C Consistent estimator of fourth moment

The asymptotic results in Propositions 4.1 and 4.2 involve the quantity µ4 = E(Y 2
i,t−1)2 = EY 4

i,t−1,

that is, the fourth moment of the variables Yi,t in the VC model (1.2). One natural estimator of µ4

is to set

µ̂4 =
1

Tp

p∑
i=1

T∑
t=1

(
(Â(

t

T
)−1Xt)

4
i − 1

)
. (C.1)

But analyzing this estimator would require being able to control Â(u) uniformly across u. This

is certainly possible, and is essentially done in connection to global tests, but would require more

stringent assumptions than those used for local tests in Appendix A.1 of the paper. Instead of

(C.1), a consistent estimator of µ4 can be constructed under the assumptions of Appendix A.1 of

the paper based on the following argument.

To get to the fourth moment of Yi,t, we shall consider (tr{XtX
′
t})2. Note that

tr{XtX
′
t} = tr{A(

t

T
)YtY

′
tA(

t

T
)′} = tr{A(

t

T
)′A(

t

T
)YtY

′
t } = tr{A2(

t

T
)YtY

′
t }

= tr{A2(
t

T
)(YtY

′
t − Ip)}+ tr{A2(

t

T
)},

5



where we used the symmetry of A(u) to write A(·)′A(·) = A(·)A(·)′ = A2(·). Then,

1

T

T∑
t=1

(tr{XtX
′
t})2 =

1

T

T∑
t=1

(
tr{A2(

t

T
)(YtY

′
t − Ip)}

)2
+

2

T

T∑
t=1

tr{A2(
t

T
)(YtY

′
t − Ip)}tr{A2(

t

T
)}

+
1

T

T∑
t=1

(
tr{A2(

t

T
)}
)2

=: R1 +R2 +R3. (C.2)

Under the assumptions of Appendix A.1 of the paper, note that R2 → 0 a.s. Indeed, this follows

from the following general argument that will be used on several occasions below. After expanding

the traces, an entry in R2 can be expressed as

1

T

T∑
t=1

b(
t

T
)Zt, (C.3)

where b(·) is continuously differentiable and Zt’s are i.i.d. with zero mean. By the summation by

parts formula,

1

T

T∑
t=1

b(
t

T
)Zt =

1

T

T−1∑
t=1

( t∑
s=1

Zs

)(
b(
t

T
)− b( t+ 1

T
)
)

+
b(1)

T

T∑
t=1

Zt −
b(1/T )

T

T−1∑
t=1

Zt.

All three last terms converge to 0 a.s. by the law of large numbers. For the first term, in particular,

this follows from bounding it by

C

T∑
t=1

∣∣∣ t∑
s=1

Zs

∣∣∣ 1

T 2
= C

T∑
t=1

∣∣∣1
t

t∑
s=1

Zs

∣∣∣ t
T 2

and noting that 1
t

∑t
s=1 Zs → 0 a.s. as t→∞.

Under the assumptions of Appendix A.1 of the paper, R3 →
∫ 1
0 (tr{A2(u)})2du. For the term

R1, note that

R1 =
1

T

T∑
t=1

( p∑
i,j=1

A2
ij(

t

T
)(Yi,tYj,t − δij)

)2
=:

1

T

T∑
t=1

R1,t,

where δij = 1 if i = j, and = 0 otherwise. By separating the sum R1,t into that over i = j and that

over i < j, and taking the square, we can further write

R1,t = R1,1,t +R1,2,t +R1,3,t +R1,4,t +R1,5,t,

6



where

R1,1,t =

p∑
i=1

(A2
ii(
t

T
))2(Y 2

i,t − 1)2,

R1,2,t =
∑
i 6=i′

A2
ii(
t

T
)A2

i′i′(
t

T
)(Y 2

i,t − 1)(Y 2
i′,t − 1),

R1,3,t = 4

p∑
i′=1

A2
i′i′(

t

T
)(Y 2

i′,t − 1)
∑
i<j

A2
ij(

t

T
)Yi,tYj,t,

R1,4,t = 4
∑
i<j

(A2
ij(

t

T
))2Y 2

i,tY
2
j,t,

R1,4,t = 4
∑
i<j

∑
i′<j′

1{i 6=i′ or j 6=j′}A
2
ij(

t

T
)A2

i′j′(
t

T
)Yi,tYj,tYi′,tYj′,t.

By the same reasoning following (C.3), for k = 2, 3, 5

1

T

T∑
t=1

R1,k,t → 0 a.s.

and

1

T

T∑
t=1

R1,1,t → µ4

∫ 1

0

p∑
i=1

(A2
ii(u))2du,

1

T

T∑
t=1

R1,4,t → 4

∫ 1

0

∑
i<j

(A2
ij(u))2du a.s.

By gathering the above observations, it follows from (C.2) that, almost surely,

1

T

T∑
t=1

(tr{XtX
′
t})2 → µ4

∫ 1

0

p∑
i=1

(A2
ii(u))2du+ 4

∫ 1

0

∑
i<j

(A2
ij(u))2du =: µ4I1 + 4I2. (C.4)

We indicate how the integrals I1 and I2 can be estimated consistently, from which a consistent

estimator of µ4 will follow.

The integrals I1 and I2 can be estimated through the following weighted U -statistics:

Î1 =
1

T (T − 1)

∑
t1 6=t2

p∑
i=1

(Xt1X
′
t1)ii(Xt2X

′
t2)iiKh(

t1
T
− t2
T

),

Î2 =
1

T (T − 1)

∑
t1 6=t2

∑
i<j

(Xt1X
′
t1)ij(Xt2X

′
t2)ijKh(

t1
T
− t2
T

).

The convergence of Î1 and Î2 to I1 and I2, respectively, can be attained by using Proposition A.3

of the paper, which also yields convergence rates.
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