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A Additional figures for Section 6

A.1 Figures for Section 6.1
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Figure 1: Model 1: Histograms of the estimates of d for the indicated sample sizes for the two
competing methods: DSSA (Sundararajan and Pourahmadi (2018)) and VC (proposed method).

The true value is d = 1.
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Figure 2: Model 2: Histograms of the estimates of d for the indicated sample sizes for the two

competing methods: DSSA and VC (proposed method). The true value is d = 2.



Figure 3: Model 3:

competing methods:
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Histograms of the estimates of d for the indicated sample sizes for the two

DSSA and VC (proposed method). The true value is d = 2.
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Figure 4: Model 4: Histograms of the estimates of d for the indicated sample sizes for the two
competing methods: DSSA and VC (proposed method). The true value is d = 3. The value of p is
set to 0.5.

A.2 Figures for Section 6.2
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Figure 5: Model 2 - Top: Plot of Dl(él (u)) against u for the competing methods DSSA and VC
and several sample sizes. VC (avg.) in triangles in squares and DSSA in solid circles. Bottom:

Analogous plot but with measure Dy(Bj(u)) against u.
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Figure 6: Model 3 - Top: Plot of D;(Bj(u)) against u for the competing methods DSSA and VC

and several sample sizes. VC (avg.) in triangles, VC (min.) in squares and DSSA in solid circles.

Bottom: Analogous plot but with measure Dy(Bi(u)) against u.
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Figure 7: Model 4 - Top: Plot of Dl(gl (u)) against u for the competing methods DSSA and VC

and several sample sizes. VC (avg.) in triangles, VC (min.) in squares and DSSA in solid circles.

Bottom: Analogous plot but with measure D2(§1 (u)) against w.



B Additional figures and tables for Section 7
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Figure 8: Histogram of the dimension estimates d by the two competing methods based on the 144

trials.

d S1 52 S3 S4 S5 S6 ST S8 S9 Avg
DSSA | 51.22 | 54.86 | 56.25 | 58.33 | 49.03 | 45.13 | 54.16 | 51.11 | 51.38 | 52.38
VC 50 | 49.31 | 50.69 | 46.52 | 52.08 | 54.16 | 50.69 | 46.15 | 54.86 | 50.49
DSSA | 58.37 | 57.63 | 54.86 | 61.11 | 54.16 | 52.08 | 52.77 | 56.45 | 52.78 | 55.57
VC | 53.14 | 59.72 | 48.61 | 57.63 | 55.56 | 52.77 | 54.17 | 45.05 | 50.69 | 53.10
DSSA | 60.48 | 58.33 | 59.02 | 55.56 | 59.33 | 56.20 | 62.50 | 64.39 | 56.94 | 59.19
VC | 60.13 | 61.11 | 47.22 | 56.94 | 57.63 | 55.56 | 61.81 | 54.54 | 54.16 | 56.57
DSSA | 60.17 | 62.50 | 56.25 | 66.67 | 62.50 | 55.56 | 65.27 | 66.28 | 55.56 | 61.19
VC | 58.04 | 60.41 | 65.97 | 66.67 | 64.58 | 57.63 | 66.67 | 59.44 | 56.94 | 61.82

Table 1: Out-of-sample classification accuracy (in %) for the 9 subjects S1-S9 for the two indicated

methods.
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Figure 9: p = 22. Histogram of the stationary subspace dimension estimates based for VC method

based on the 144 trials.



d | Method | S1 52 S3 S4 S5 S6 ST S8 S9 Avg
VC 74.12 | 66.67 | 70.83 | 73.51 | 73.61 | 70.83 | 74.30 | 68.53 | 69.44 | 71.32
! DSSA | 69.67 | 67.57 | 70.00 | 64.52 | 60.48 | 63.70 | 66.67 | 68.30 | 68.55 | 66.60
VC 80.41 75 | 72.22 | 77.08 | 81.25 | 74.30 | 77.08 | 71.32 | 77.08 | 76.19
! DSSA | 71.52 | 69.96 | 77.90 | 77.48 | 65.50 | 70.55 | 71.41 | 70.38 | 69.80 | 71.61
vC 87.40 | 84.72 | 74.30 | 81.94 | 88.19 | 81.25 | 82.63 | 81.25 | 81.25 | 82.55
H DSSA | 75.78 | 69.97 | 72.92 | 75.96 | 69.58 | 71.95 | 68.34 | 71.33 | 73.31 | 72.12
VC 89.50 | 90.97 | 85.41 | 88.19 | 89.58 | 88.19 | 90.27 | 84.72 | 84.72 | 87.95
s DSSA | 79.86 | 70.98 | 80.56 | 78.24 | 70.83 | 77.62 | 73.55 | 78.38 | 74.72 | 76.08

Table 2: Out-of-sample classification accuracy (in %) for the 9 subjects S1-S9 corresponding to d =
7,9, 11, and 13 for the VC and DSSA methods with p = 22.

C Consistent estimator of fourth moment

The asymptotic results in Propositions 4.1 and 4.2 involve the quantity pu4 = IE(th —1)2 = EYi‘}t -1,
that is, the fourth moment of the variables Y;; in the VC model (1.2). One natural estimator of ji4
is to set
1 T
ﬁ4:FpZZ( )1, —1). (C.1)
i=1 t=1
But analyzing this estimator would require being able to control ﬁ(u) uniformly across uw. This
is certainly possible, and is essentially done in connection to global tests, but would require more
stringent assumptions than those used for local tests in Appendix A.1 of the paper. Instead of
(C.1), a consistent estimator of j4 can be constructed under the assumptions of Appendix A.1 of
the paper based on the following argument.

To get to the fourth moment of Y;;, we shall consider (tr{X;X/})?. Note that
(X X7} = r{AGRYY/ACL)) = tr{AGRY AGR)ViY) = tr{A%(5)¥i¥y)

= (AL (Y] — L)} + {42},



where we used the symmetry of A(u) to write A(-)'A(-) = A(-)A(-)' = A2%(-). Then,

T

Ztr{XtXt = 1Z(tr{A )WY, -1 )})2

_ t=1
2 5 A2 V(YY) — L) }tr{A? ¢
fz tr{ 1Yy — Ip) ptr{ (f)}

1

f (tr{A2(%)}>2 =: Ry + Ry + R3. (C.2)

IIMH 1

Under the assumptions of Appendix A.1 of the paper, note that Ry — 0 a.s. Indeed, this follows
from the following general argument that will be used on several occasions below. After expanding
the traces, an entry in Ry can be expressed as

T

;;b(;)Zt, (C.3)

where b(-) is continuously differentiable and Z,’s are i.i.d. with zero mean. By the summation by

parts formula,

T-1

T
LS LS (S ) ) S DS,

t=1

All three last terms converge to 0 a.s. by the law of large numbers. For the first term, in particular,

this follows from bounding it by

1 T 1
=X X2
t=1 s=1

and noting that %Zizl Zs— 0 a.s. as t — o0.

Under the assumptions of Appendix A.1 of the paper, R3 — fol (tr{A%(u)})?du. For the term
R1, note that

Z(ZA (VidYye—637)) = ZRM,

t=1 4j=1
where 0;; = 1if i = j, and = 0 otherwise. By separating the sum R;; into that over ¢ = j and that

over i < j, and taking the square, we can further write

Rit=Ri1t+ Rig¢+ R3¢+ Rias + Risg,



where

p

t
Riie = Z(A?i(f))2(th—1)2,
i=1

t t
Rigy = ZA?i(f)Az%i/(f)(th - 1)(Y7, - 1),

i
L t

R1,3,t = 4 Z A?/Z/(T ZA Zth ts

=1 1<j
Rias = Z Yth it

1<J
R1,47t = 42 Z 1{1767, or j#j’ }A ( )A ( )Ety Yy tY’t

1<j i <g’

By the same reasoning following (C.3), for kK =2,3,5

1 T
T Z Rl,k,t —0 a.s.
t=1

and

T L P
%ZRLN _>“4/0 Z(Azzz(u) ZR14t—>4/ Z u))?du  a.s.
t=1 i=1

1<J

By gathering the above observations, it follows from (C.2) that, almost surely,

- Z tr{ X, X/})? = u4/ Z )2du + 4/ > (A3(w)du =: paly + AT, (C.4)

1<j
We indicate how the integrals I; and Iy can be estimated consistently, from which a consistent
estimator of ug will follow.

The integrals I; and Is can be estimated through the following weighted U-statistics:

I ! 131 to

= m S S X (X XL (L — 2,
t1#£ts 1=1

I t1 to

b S G-
tl;ﬁtg i<j

The convergence of fl and fg to I and Iy, respectively, can be attained by using Proposition A.3
of the paper, which also yields convergence rates.
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